Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Nogueira, Tiago de Oliveira
Orientador(a): Andrade, Carla Freitas de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
DFA
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/60362
Resumo: Due to the increased concern with environmental issues, sustainable methods of energy production have gained more and more space, and with this, the improvement in the efficiency of these technologies, especially wind power - due to its production power and low production cost - is of short importance. This present dissertation performs a study of the vibration signals extracted from a scaled wind turbine. Masses of 0.5 g, 1.0 g, and 1.5 g were added to the tips of one and two blades, simulating possible problems such as erosion or ice accumulation, in addition to the normal condition, where the three blades and the system were balanced. The system ran at three different speeds: 900 rpm, 1200 rpm, and 1500 rpm. Extended fluctuation analysis (DFA) was used for the pre-processing of the original signals. Then, the vectors were classified by the Radial Base Neural Network model, a pattern recognition technique with supervised training. The classifier achieved a result of 98.83%, 98.15%, and 96.92%, for the rotations of 900 rpm, 1200 rpm, and 1500 rpm, respectively, in the recognition of the patterns under study, being able to differentiate, with indices greater than 96%, the normal operating conditions of the defined imbalance conditions. Furthermore, compared to other methods already used for the same purpose, the results were similar, being lower for 900 rpm, at 0.46%; 4% higher for 1200 rpm; and lower by 1% for 1500 rpm. Finally, the capacity of the classifier studied in the identification of unknown signals is concluded, being important in the identification of possible defects that may arise in the blades of a wind turbine, from the results obtained are very promising and can make relevant contributions in the development of a system for the detection and classification of defects in wind turbine blades.
id UFC-7_2e1be48cc6d93f484dd23d4379029efb
oai_identifier_str oai:repositorio.ufc.br:riufc/60362
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Nogueira, Tiago de OliveiraMoura, Elineudo Pinho deAndrade, Carla Freitas de2021-09-09T17:13:09Z2021-09-09T17:13:09Z2021NOGUEIRA, Tiago de Oliveira. Análise de desbalanceamento de turbina eólica em escala Utilizando rede neural de base radial como classificador. 2021. 90f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Mecânica, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/60362Due to the increased concern with environmental issues, sustainable methods of energy production have gained more and more space, and with this, the improvement in the efficiency of these technologies, especially wind power - due to its production power and low production cost - is of short importance. This present dissertation performs a study of the vibration signals extracted from a scaled wind turbine. Masses of 0.5 g, 1.0 g, and 1.5 g were added to the tips of one and two blades, simulating possible problems such as erosion or ice accumulation, in addition to the normal condition, where the three blades and the system were balanced. The system ran at three different speeds: 900 rpm, 1200 rpm, and 1500 rpm. Extended fluctuation analysis (DFA) was used for the pre-processing of the original signals. Then, the vectors were classified by the Radial Base Neural Network model, a pattern recognition technique with supervised training. The classifier achieved a result of 98.83%, 98.15%, and 96.92%, for the rotations of 900 rpm, 1200 rpm, and 1500 rpm, respectively, in the recognition of the patterns under study, being able to differentiate, with indices greater than 96%, the normal operating conditions of the defined imbalance conditions. Furthermore, compared to other methods already used for the same purpose, the results were similar, being lower for 900 rpm, at 0.46%; 4% higher for 1200 rpm; and lower by 1% for 1500 rpm. Finally, the capacity of the classifier studied in the identification of unknown signals is concluded, being important in the identification of possible defects that may arise in the blades of a wind turbine, from the results obtained are very promising and can make relevant contributions in the development of a system for the detection and classification of defects in wind turbine blades.Devido ao aumento da preocupação com questões ambientais, métodos sustentáveis de produção energética têm ganhado cada vez mais espaço, e com isso, a melhoria da eficiência dessas tecnologias, sobretudo a eólica – devido ao seu poder de produção e baixo custo de produção – é de suma importância. Esta presente dissertação realiza um estudo dos sinais de vibração extraídos de uma turbina eólica em escala. Massas de 0,5 g, 1,0 g e 1,5 g foram adicionadas às pontas de uma e duas pás, simulando possíveis problemas, como erosão ou acúmulo de gelo, além da condição normal, onde as três pás e o sistema estavam balanceados. O sistema funcionou em três rotações diferentes: 900 rpm, 1200 rpm e 1500 rpm. Usou-se a análise de flutuações destendenciadas (DFA) para o pré-processamento dos sinais originais. Em seguida, os vetores foram classificados pelo modelo de Rede Neural de Base radial, uma técnica de reconhecimento de padrões com treinamento supervisionado. O classificador alcançou um resultado de 98,83%, 98,15% e 96,92%, para as rotações de 900 rpm, 1200 rpm e 1500 rpm, respectivamente, no reconhecimento dos padrões em estudo, sendo capaz de diferenciar, com índices maiores que 96%, as condições normais de operação das condições de desbalanceamentos definidas. Além disso, comparado a outros métodos já utilizados para o mesmo fim, os resultados foram próximos, sendo inferior para 900 rpm, em 0,46%; superior em 4%, para 1200 rpm; e inferior em 1% para 1500 rpm. Por fim, conclui-se a capacidade do classificador estudado na identificação de sinais desconhecidos, sendo importante na identificação de possíveis defeitos que possam surgir nas pás de uma turbina eólica, a partir dos resultados obtidos são muito promissores e podem dar contribuições relevantes no desenvolvimento de um sistema de detecção e classificação de defeitos em pás de aerogeradores.Análise de vibraçãoDFARNBRTurbina eólicaAnálise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificadorScaled wind turbine unbalance analysis using radial-based neural network as classifierinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/60362/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2021_dis_tonogueira.pdf2021_dis_tonogueira.pdfDissertação de Tiago de Oliveira Nogueiraapplication/pdf3769141http://repositorio.ufc.br/bitstream/riufc/60362/1/2021_dis_tonogueira.pdf46e63d68e6947f2608f6c410dcca1e3eMD51riufc/603622022-09-28 14:20:51.5oai:repositorio.ufc.br:riufc/60362Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-09-28T17:20:51Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
dc.title.en.pt_BR.fl_str_mv Scaled wind turbine unbalance analysis using radial-based neural network as classifier
title Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
spellingShingle Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
Nogueira, Tiago de Oliveira
Análise de vibração
DFA
RNBR
Turbina eólica
title_short Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
title_full Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
title_fullStr Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
title_full_unstemmed Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
title_sort Análise de desbalanceamento de turbina eólica em escala utilizando rede neural de base radial como classificador
author Nogueira, Tiago de Oliveira
author_facet Nogueira, Tiago de Oliveira
author_role author
dc.contributor.co-advisor.none.fl_str_mv Moura, Elineudo Pinho de
dc.contributor.author.fl_str_mv Nogueira, Tiago de Oliveira
dc.contributor.advisor1.fl_str_mv Andrade, Carla Freitas de
contributor_str_mv Andrade, Carla Freitas de
dc.subject.por.fl_str_mv Análise de vibração
DFA
RNBR
Turbina eólica
topic Análise de vibração
DFA
RNBR
Turbina eólica
description Due to the increased concern with environmental issues, sustainable methods of energy production have gained more and more space, and with this, the improvement in the efficiency of these technologies, especially wind power - due to its production power and low production cost - is of short importance. This present dissertation performs a study of the vibration signals extracted from a scaled wind turbine. Masses of 0.5 g, 1.0 g, and 1.5 g were added to the tips of one and two blades, simulating possible problems such as erosion or ice accumulation, in addition to the normal condition, where the three blades and the system were balanced. The system ran at three different speeds: 900 rpm, 1200 rpm, and 1500 rpm. Extended fluctuation analysis (DFA) was used for the pre-processing of the original signals. Then, the vectors were classified by the Radial Base Neural Network model, a pattern recognition technique with supervised training. The classifier achieved a result of 98.83%, 98.15%, and 96.92%, for the rotations of 900 rpm, 1200 rpm, and 1500 rpm, respectively, in the recognition of the patterns under study, being able to differentiate, with indices greater than 96%, the normal operating conditions of the defined imbalance conditions. Furthermore, compared to other methods already used for the same purpose, the results were similar, being lower for 900 rpm, at 0.46%; 4% higher for 1200 rpm; and lower by 1% for 1500 rpm. Finally, the capacity of the classifier studied in the identification of unknown signals is concluded, being important in the identification of possible defects that may arise in the blades of a wind turbine, from the results obtained are very promising and can make relevant contributions in the development of a system for the detection and classification of defects in wind turbine blades.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-09-09T17:13:09Z
dc.date.available.fl_str_mv 2021-09-09T17:13:09Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NOGUEIRA, Tiago de Oliveira. Análise de desbalanceamento de turbina eólica em escala Utilizando rede neural de base radial como classificador. 2021. 90f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Mecânica, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/60362
identifier_str_mv NOGUEIRA, Tiago de Oliveira. Análise de desbalanceamento de turbina eólica em escala Utilizando rede neural de base radial como classificador. 2021. 90f. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Mecânica, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/60362
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/60362/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/60362/1/2021_dis_tonogueira.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
46e63d68e6947f2608f6c410dcca1e3e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793267095109632