Princípio do máximo relacionado ao crescimento de volume
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/67268 |
Resumo: | In this Dissertation, it is presented a new form of maximum principle for smooth functions on a complete noncompact Riemannian manifold M for which there exists a bounded vector field X such that its inner product with the gradient of a function f is greather than or equal to zero on M and its divergent is greather than or equal af outside a suitable compact subset of M, for some positive constant a, under the assumption that M has either polynomial or exponential volume growth. We then use it to obtain some Bernstein-type results for hypersurfaces immersed into a Riemannian manifold endowed with a Killing vector field, as well as to obtain some results on the existence and the size of minimal submanifolds immersed into a Riemannian manifold endowed with a closed conformal vector field. |
| id |
UFC-7_307daeb68d369ed4ffcabc46a9cf9e4c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/67268 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Rodrigues, Matheus MendesMuniz Neto, Antonio Caminha2022-07-20T11:45:23Z2022-07-20T11:45:23Z2022-06-10RODRIGUES, Matheus Mendes. Princípio do máximo relacionado ao crescimento de volume. 2022. 43 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/67268In this Dissertation, it is presented a new form of maximum principle for smooth functions on a complete noncompact Riemannian manifold M for which there exists a bounded vector field X such that its inner product with the gradient of a function f is greather than or equal to zero on M and its divergent is greather than or equal af outside a suitable compact subset of M, for some positive constant a, under the assumption that M has either polynomial or exponential volume growth. We then use it to obtain some Bernstein-type results for hypersurfaces immersed into a Riemannian manifold endowed with a Killing vector field, as well as to obtain some results on the existence and the size of minimal submanifolds immersed into a Riemannian manifold endowed with a closed conformal vector field.Nesta dissertação, apresentamos uma nova forma do princípio do máximo para funções suaves em uma variedade riemanniana M, completa e não compacta, possuindo um campo vetorial limitado X satisfazendo que seu produto interno com o gradiente de uma função f é maior ou igual a zero em M e que seu divergente é maior ou igual a af fora de um conjunto compacto apropriado, sendo a uma constante positiva, e sob a hipótese de M ter crescimento de volume polinomial ou exponencial. Utilizaremos tal princípio para obter alguns resultados tipo-Bernstein para hipersuperfícies imersas em uma variedade riemanniana e munidas com um campo de Killing, assim como alguns resultados sobre a existência e o tamanho de subvariedades mínimas em uma variedade riemanniana munida com um campo vetorial conforme fechado.Princípio do máximo (Matemática)Variedades riemannianasCrescimento de volumeResultados tipo-BernsteinHipersuperfícies com curvatura média constanteSubvariedades mínimasMaximum principle (Mathematics)Riemannian manifoldsVolume growthBernstein-type resultsConstant mean curvature hypersurfacesMinimal submanifoldsPrincípio do máximo relacionado ao crescimento de volumeMaximum principle related to volume growthinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2022_dis_mmrodrigues.pdf2022_dis_mmrodrigues.pdfDissertação Matheus Mendes Rodriguesapplication/pdf480008http://repositorio.ufc.br/bitstream/riufc/67268/5/2022_dis_mmrodrigues.pdffef65172971eef423aa6246a1f951a10MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82152http://repositorio.ufc.br/bitstream/riufc/67268/4/license.txtfb3ad2d23d9790966439580114baefafMD54riufc/672682022-07-20 08:47:21.767oai:repositorio.ufc.br:riufc/67268TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIAoKQW8gY29uY29yZGFyIGNvbSBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIG9icmEgYXF1aSBkZXNjcml0YSBjb25jZWRlKG0pIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbSBmb3JtYXRvIGltcHJlc3NvLCBlbGV0csO0bmljbyBvdSBlbSBxdWFscXVlciBvdXRybyBtZWlvLiBWb2PDqiBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgY29udmVydGVyIG8gYXJxdWl2byBkZXBvc2l0YWRvIGEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIGNvbSBmaW5zIGRlIHByZXNlcnZhw6fDo28uIFZvY8OqKHMpIHRhbWLDqW0gY29uY29yZGEobSkgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3RlIGRlcMOzc2l0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlL291IHByZXNlcnZhw6fDo28uIFZvY8OqIGRlY2xhcmEgcXVlIGEgYXByZXNlbnRhw6fDo28gZG8gc2V1IHRyYWJhbGhvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqKHMpIHBvZGUobSkgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYShtKSBxdWUgbyBlbnZpbyDDqSBkZSBzZXUgY29uaGVjaW1lbnRvIGUgbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBvdXRyYSBwZXNzb2Egb3UgaW5zdGl0dWnDp8Ojby4gQ2FzbyBvIGRvY3VtZW50byBhIHNlciBkZXBvc2l0YWRvIGNvbnRlbmhhIG1hdGVyaWFsIHBhcmEgbyBxdWFsIHZvY8OqKHMpIG7Do28gZGV0w6ltIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBkZSBhdXRvcmFpcywgdm9jw6oocykgZGVjbGFyYShtKSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EgZSBxdWUgb3MgbWF0ZXJpYWlzIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcywgZXN0w6NvIGRldmlkYW1lbnRlIGlkZW50aWZpY2Fkb3MgZSByZWNvbmhlY2lkb3Mgbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIGFwcmVzZW50YcOnw6NvLgogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gCk8gcmVwb3NpdMOzcmlvIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvIHNldShzKSBub21lKHMpIGNvbW8gYXV0b3IoZXMpIG91IHRpdHVsYXIoZXMpIGRvIGRpcmVpdG8gZGUgYXV0b3IoZXMpIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gZSBkZWNsYXJhIHF1ZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgpSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-07-20T11:47:21Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Princípio do máximo relacionado ao crescimento de volume |
| dc.title.en.pt_BR.fl_str_mv |
Maximum principle related to volume growth |
| title |
Princípio do máximo relacionado ao crescimento de volume |
| spellingShingle |
Princípio do máximo relacionado ao crescimento de volume Rodrigues, Matheus Mendes Princípio do máximo (Matemática) Variedades riemannianas Crescimento de volume Resultados tipo-Bernstein Hipersuperfícies com curvatura média constante Subvariedades mínimas Maximum principle (Mathematics) Riemannian manifolds Volume growth Bernstein-type results Constant mean curvature hypersurfaces Minimal submanifolds |
| title_short |
Princípio do máximo relacionado ao crescimento de volume |
| title_full |
Princípio do máximo relacionado ao crescimento de volume |
| title_fullStr |
Princípio do máximo relacionado ao crescimento de volume |
| title_full_unstemmed |
Princípio do máximo relacionado ao crescimento de volume |
| title_sort |
Princípio do máximo relacionado ao crescimento de volume |
| author |
Rodrigues, Matheus Mendes |
| author_facet |
Rodrigues, Matheus Mendes |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Rodrigues, Matheus Mendes |
| dc.contributor.advisor1.fl_str_mv |
Muniz Neto, Antonio Caminha |
| contributor_str_mv |
Muniz Neto, Antonio Caminha |
| dc.subject.por.fl_str_mv |
Princípio do máximo (Matemática) Variedades riemannianas Crescimento de volume Resultados tipo-Bernstein Hipersuperfícies com curvatura média constante Subvariedades mínimas Maximum principle (Mathematics) Riemannian manifolds Volume growth Bernstein-type results Constant mean curvature hypersurfaces Minimal submanifolds |
| topic |
Princípio do máximo (Matemática) Variedades riemannianas Crescimento de volume Resultados tipo-Bernstein Hipersuperfícies com curvatura média constante Subvariedades mínimas Maximum principle (Mathematics) Riemannian manifolds Volume growth Bernstein-type results Constant mean curvature hypersurfaces Minimal submanifolds |
| description |
In this Dissertation, it is presented a new form of maximum principle for smooth functions on a complete noncompact Riemannian manifold M for which there exists a bounded vector field X such that its inner product with the gradient of a function f is greather than or equal to zero on M and its divergent is greather than or equal af outside a suitable compact subset of M, for some positive constant a, under the assumption that M has either polynomial or exponential volume growth. We then use it to obtain some Bernstein-type results for hypersurfaces immersed into a Riemannian manifold endowed with a Killing vector field, as well as to obtain some results on the existence and the size of minimal submanifolds immersed into a Riemannian manifold endowed with a closed conformal vector field. |
| publishDate |
2022 |
| dc.date.accessioned.fl_str_mv |
2022-07-20T11:45:23Z |
| dc.date.available.fl_str_mv |
2022-07-20T11:45:23Z |
| dc.date.issued.fl_str_mv |
2022-06-10 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
RODRIGUES, Matheus Mendes. Princípio do máximo relacionado ao crescimento de volume. 2022. 43 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/67268 |
| identifier_str_mv |
RODRIGUES, Matheus Mendes. Princípio do máximo relacionado ao crescimento de volume. 2022. 43 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022. |
| url |
http://www.repositorio.ufc.br/handle/riufc/67268 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/67268/5/2022_dis_mmrodrigues.pdf http://repositorio.ufc.br/bitstream/riufc/67268/4/license.txt |
| bitstream.checksum.fl_str_mv |
fef65172971eef423aa6246a1f951a10 fb3ad2d23d9790966439580114baefaf |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793354427858944 |