Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Sousa, Kauan Magalhães de
Orientador(a): Machado, Isaac Rocha
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/80680
Resumo: The modular multilevel converter (MMC) is a modern topology for power converters. Due to its modular characteristics, ease of expansion, and high-quality output voltage waveform, the MMC has been especially recommended for applications in high-voltage power systems, particularly in HVDC (High Voltage Direct Current) systems. Like all electrical power systems, the MMC is subject to open-circuit and short-circuit faults. To this day, there are few studies focused on fault identification/location in submodules (SM), especially related to open-circuit faults. This work proposes a fault detection methodology using a convolutional neural network, LSTM (Long Short-Term Memory), to compile simulated data from two MMCs forming an HVDC system and create an artificial intelligence capable of classifying and providing their location based on the time-series analysis of arm currents.
id UFC-7_32e0a28c9ffba76093009ef86b2f44c5
oai_identifier_str oai:repositorio.ufc.br:riufc/80680
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Sousa, Kauan Magalhães deMachado, Isaac Rocha2025-04-29T15:41:39Z2025-04-29T15:41:39Z2024SOUSA, Kauan Magalhães de. Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024.http://repositorio.ufc.br/handle/riufc/80680The modular multilevel converter (MMC) is a modern topology for power converters. Due to its modular characteristics, ease of expansion, and high-quality output voltage waveform, the MMC has been especially recommended for applications in high-voltage power systems, particularly in HVDC (High Voltage Direct Current) systems. Like all electrical power systems, the MMC is subject to open-circuit and short-circuit faults. To this day, there are few studies focused on fault identification/location in submodules (SM), especially related to open-circuit faults. This work proposes a fault detection methodology using a convolutional neural network, LSTM (Long Short-Term Memory), to compile simulated data from two MMCs forming an HVDC system and create an artificial intelligence capable of classifying and providing their location based on the time-series analysis of arm currents.O conversor modular multinível (MMC) é uma topologia atual para conversores de potência. Por ser um conversor com características modulares, fácil de expandir e possui uma forma de onda de tensão de saída de boa qualidade, o MMC vem sendo especialmente indicado para aplicações em sistemas de potência de alta tensão, principalmente em sistemas HVDC (High Voltage Direct Current). Assim como todo sistema elétrico de potência, o MMC está sujeito a falhas, de circuito aberto e de curto-circuito. Ainda hoje, existem poucos estudos focados na identificação/localização de falhas em submódulos (SM), especialmente relacionados a falhas de circuito aberto. Neste trabalho, é proposto uma metodologia de identificação de padrões utilizando uma rede neural convolutiva, LSTM (Long short-term memory), para compilar os dados simulados de dois MMC’s compondo um sistema HVDC e criar uma inteligência artificial capaz de classificar a falha e fornecer sua localização baseado na análise das séries temporais das correntes dos braços.Este documento está disponível online com base na Portaria nº 348, de 08 de dezembro de 2022, disponível em: https://biblioteca.ufc.br/wp-content/uploads/2022/12/portaria348-2022.pdf, que autoriza a digitalização e a disponibilização no Repositório Institucional (RI) da coleção retrospectiva de TCC, dissertações e teses da UFC, sem o termo de anuência prévia dos autores. Em caso de trabalhos com pedidos de patente e/ou de embargo, cabe, exclusivamente, ao autor(a) solicitar a restrição de acesso ou retirada de seu trabalho do RI, mediante apresentação de documento comprobatório à Direção do Sistema de Bibliotecas.Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMMCHVDCFalha de circuito aberto em SMDetecção de falhasLSTMInteligência ArtificalMMCHVDCOpen-Circuit SM FaultFault DetectionLSTMArtificial IntelligenceCNPQ::ENGENHARIASinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/2383404468260121https://orcid.org/0000-0002-8570-858Xhttp://lattes.cnpq.br/29565856187461362024LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/80680/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2024_dis_kmsousa.pdf2024_dis_kmsousa.pdfapplication/pdf3637759http://repositorio.ufc.br/bitstream/riufc/80680/5/2024_dis_kmsousa.pdf0d98410c55432c608f4920c5a7091e5dMD55riufc/806802025-05-08 10:44:56.879oai:repositorio.ufc.br:riufc/80680Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-05-08T13:44:56Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
title Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
spellingShingle Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
Sousa, Kauan Magalhães de
CNPQ::ENGENHARIAS
MMC
HVDC
Falha de circuito aberto em SM
Detecção de falhas
LSTM
Inteligência Artifical
MMC
HVDC
Open-Circuit SM Fault
Fault Detection
LSTM
Artificial Intelligence
title_short Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
title_full Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
title_fullStr Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
title_full_unstemmed Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
title_sort Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis
author Sousa, Kauan Magalhães de
author_facet Sousa, Kauan Magalhães de
author_role author
dc.contributor.author.fl_str_mv Sousa, Kauan Magalhães de
dc.contributor.advisor1.fl_str_mv Machado, Isaac Rocha
contributor_str_mv Machado, Isaac Rocha
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
MMC
HVDC
Falha de circuito aberto em SM
Detecção de falhas
LSTM
Inteligência Artifical
MMC
HVDC
Open-Circuit SM Fault
Fault Detection
LSTM
Artificial Intelligence
dc.subject.ptbr.pt_BR.fl_str_mv MMC
HVDC
Falha de circuito aberto em SM
Detecção de falhas
LSTM
Inteligência Artifical
dc.subject.en.pt_BR.fl_str_mv MMC
HVDC
Open-Circuit SM Fault
Fault Detection
LSTM
Artificial Intelligence
description The modular multilevel converter (MMC) is a modern topology for power converters. Due to its modular characteristics, ease of expansion, and high-quality output voltage waveform, the MMC has been especially recommended for applications in high-voltage power systems, particularly in HVDC (High Voltage Direct Current) systems. Like all electrical power systems, the MMC is subject to open-circuit and short-circuit faults. To this day, there are few studies focused on fault identification/location in submodules (SM), especially related to open-circuit faults. This work proposes a fault detection methodology using a convolutional neural network, LSTM (Long Short-Term Memory), to compile simulated data from two MMCs forming an HVDC system and create an artificial intelligence capable of classifying and providing their location based on the time-series analysis of arm currents.
publishDate 2024
dc.date.issued.fl_str_mv 2024
dc.date.accessioned.fl_str_mv 2025-04-29T15:41:39Z
dc.date.available.fl_str_mv 2025-04-29T15:41:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUSA, Kauan Magalhães de. Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/80680
identifier_str_mv SOUSA, Kauan Magalhães de. Aplicação de Inteligência Artificial na detecção de falhas em sistemas HVDC com conversores modulares multiníveis. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024.
url http://repositorio.ufc.br/handle/riufc/80680
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/80680/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/80680/5/2024_dis_kmsousa.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
0d98410c55432c608f4920c5a7091e5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793409696202752