Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Almeida, Eurileny Lucas de
Orientador(a): Teixeira, Adunias dos Santos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/78944
Resumo: The general objective of this research was to estimate soil texture, through its spectral behavior obtained by laboratory spectroradiometry and airborne sensors, with and without the interference of Organic Matter (OM) in different soils in the state of Ceará. The study was carried out in two different areas of the state of Ceará, in the municipalities of Morada Nova (A1) and Limoeiro do Norte (A2). 233 deformed soil samples were collected, from 0 to 10 cm deep. For each soil sample, particle size, OM and spectral data were obtained using the ProSpecTir-VS airborne sensor and the FieldSpec Pro FR 3 spectroradiometer sensor in the laboratory. To obtain spectral data in the laboratory, Oven-Dried Fine Earth at 45ºC (TFSE) and Fine Earth Without Organic Matter (TSOM) were used. A descriptive analysis of particle size and spectral data was carried out and Pearson's correlation was obtained between the sand, silt and clay contents and the reflectance of the soil without OM. In the analysis of spectral data acquired in the laboratory from soil samples, with and without Organic Matter, Principal Component Analysis - PCA was also applied. To estimate soil texture, all possible band relationships of the two sensors were tested in search of a Normalized Difference Index (NDI). In addition to reflectance, the spectral data were also analyzed in transformed form: Savitzky-Golay smoothing, 1st derivative and normalized. Partial Least Squares Regression (PLSR) was applied using all spectral data and after band selection. For model calibration, 70% of the soil samples were used and 30% for validation. The analyzes were carried out using the total set of data and separated by region (A1 and A2). Thus, it was observed that the soils in the A2 region (Irrigated Perimeter Jaguaribe Apodi) are more clayey than the soils in A1 (Irrigated Perimeter Morada Nova), with the latter having a predominance of silty and sandy soils. The best correlation results were from the proximal sensor, FieldSpec Pro FR 3, for clay, with a strong correlation of -0.74 and -0.71 for the complete sample and for the A1 region, respectively. The wavelengths chosen to construct the NDI were 2133 and 2335 nm, with a coefficient of determination (R²) of 0.67. The best validation results, using PLSR, were from the laboratory sensor with data in first derivative, with adjusted R² of 0.77 and 0.79 for clay using all data and for sand with A2 data, respectively. Regarding texture estimation for soil without OM, the best PLRS results were for sand with all normalized data (adjusted R² = 0.75) and for A2 (adjusted R² = 0.75), using spectral data without transformation. It is concluded from this work that laboratory spectral data (FieldSpec) were more efficient in estimating the textural attributes of soils than airborne sensor data (SpecTIR-VS), especially when using a data set with different soils and regions. . When comparing the predictive models, using the spectral behavior of soil samples with and without organic matter, it is possible to notice the improvement in the estimation of sand and clay contents, after removing the OM.
id UFC-7_34a4c5ee4b633c12db0f0a35853a2bec
oai_identifier_str oai:repositorio.ufc.br:riufc/78944
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Almeida, Eurileny Lucas deTeixeira, Adunias dos Santos2024-11-21T18:52:23Z2024-11-21T18:52:23Z2020ALMEIDA, Eurileny Lucas de. Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos. 2020. 118 f. Tese (Doutorado em Ciência do Solo) - Universidade Federal do Ceará, Fortaleza, 2020.http://repositorio.ufc.br/handle/riufc/78944The general objective of this research was to estimate soil texture, through its spectral behavior obtained by laboratory spectroradiometry and airborne sensors, with and without the interference of Organic Matter (OM) in different soils in the state of Ceará. The study was carried out in two different areas of the state of Ceará, in the municipalities of Morada Nova (A1) and Limoeiro do Norte (A2). 233 deformed soil samples were collected, from 0 to 10 cm deep. For each soil sample, particle size, OM and spectral data were obtained using the ProSpecTir-VS airborne sensor and the FieldSpec Pro FR 3 spectroradiometer sensor in the laboratory. To obtain spectral data in the laboratory, Oven-Dried Fine Earth at 45ºC (TFSE) and Fine Earth Without Organic Matter (TSOM) were used. A descriptive analysis of particle size and spectral data was carried out and Pearson's correlation was obtained between the sand, silt and clay contents and the reflectance of the soil without OM. In the analysis of spectral data acquired in the laboratory from soil samples, with and without Organic Matter, Principal Component Analysis - PCA was also applied. To estimate soil texture, all possible band relationships of the two sensors were tested in search of a Normalized Difference Index (NDI). In addition to reflectance, the spectral data were also analyzed in transformed form: Savitzky-Golay smoothing, 1st derivative and normalized. Partial Least Squares Regression (PLSR) was applied using all spectral data and after band selection. For model calibration, 70% of the soil samples were used and 30% for validation. The analyzes were carried out using the total set of data and separated by region (A1 and A2). Thus, it was observed that the soils in the A2 region (Irrigated Perimeter Jaguaribe Apodi) are more clayey than the soils in A1 (Irrigated Perimeter Morada Nova), with the latter having a predominance of silty and sandy soils. The best correlation results were from the proximal sensor, FieldSpec Pro FR 3, for clay, with a strong correlation of -0.74 and -0.71 for the complete sample and for the A1 region, respectively. The wavelengths chosen to construct the NDI were 2133 and 2335 nm, with a coefficient of determination (R²) of 0.67. The best validation results, using PLSR, were from the laboratory sensor with data in first derivative, with adjusted R² of 0.77 and 0.79 for clay using all data and for sand with A2 data, respectively. Regarding texture estimation for soil without OM, the best PLRS results were for sand with all normalized data (adjusted R² = 0.75) and for A2 (adjusted R² = 0.75), using spectral data without transformation. It is concluded from this work that laboratory spectral data (FieldSpec) were more efficient in estimating the textural attributes of soils than airborne sensor data (SpecTIR-VS), especially when using a data set with different soils and regions. . When comparing the predictive models, using the spectral behavior of soil samples with and without organic matter, it is possible to notice the improvement in the estimation of sand and clay contents, after removing the OM.O objetivo geral desta pesquisa foi estimar a textura do solo, por meio de seu comportamento espectral obtido por espectrorradiometria de laboratório e sensor aerotransportado, com e sem a interferência da Matéria da Orgânica (MO) em diferentes solos do estado do Ceará. O estudo foi realizado em duas diferentes áreas do estado do Ceará, nos municípios de Morada Nova (A1) e Limoeiro do Norte (A2). Foram coletadas 233 amostras de solo deformadas, de 0 a 10 cm de profundidade. Para cada amostra de solo foram obtidos os dados granulométricos, MO e espectrais utilizando o sensor aerotransportado ProSpecTir-VS e o sensor espectrorradiômetro FieldSpec Pro FR 3 em laboratório. Na obtenção dos dados espectrais em laboratório foi utilizada Terra Fina Seca em Estufa a 45ºC (TFSE) e a Terra Fina Sem Matéria Orgânica (TSMO). Foi realizada a análise descritiva dos dados granulométricos e espectrais e a correlação de Pearson foi obtida entre os teores de areia, silte e argila e a reflectância do solo sem MO. Na análise dos dados espectrais adquiridos em laboratório das amostras de solo, com e sem Matéria Orgânica, também foi aplicada a Análise de Componentes Principais - PCA. Para a estimativa da textura do solo foram testadas todas as possíveis relações de bandas dos dois sensores a procura de um Índice por Diferença Normalizada (NDI). Além da reflectância, os dados espectrais foram analisados também na forma transformada: suavização por Savitzky-Golay, 1ª derivada e normalizadas. A Regressão por Mínimos Quadrados Parciais (PLSR) foi aplicado utilizando todos os dados espectrais e após seleção de bandas. Para calibração dos modelos foram utilizadas 70% das amostras de solo e para validação 30%. As análises foram realizadas utilizando o conjunto total dos dados e separados por região (A1 e A2). Assim, pôde-se observar que os solos da região A2 (Perímetro Irrigado Jaguaribe Apodi) são mais argilosos que os solos da A1 (Perímetro Irrigado de Morada Nova), havendo neste último a predominância de solos siltosos e arenosos. Os melhores resultados de correlação foram do sensor proximal, FieldSpec Pro FR 3, para argila, com correlação forte de -0,74 e -0,71 para a amostra completa e para a região A1, respectivamente. Os comprimentos de onda eleitos para a construção do NDI foram 2133 e 2335 nm, com coeficiente de determinação (R²) de 0,67. Os melhores resultados de validação, utilizando a PLSR, foram do sensor de laboratório com os dados em primeira derivada, com R² ajustado de 0.77 e 0.79 para a argila utilizando todos os dados e para areia com os dados da A2, respectivamente. Já na estimativa da textura para o solo sem MO, os melhores resultados da PLRS foram para a areia com todos os dados normalizados (R²ajustado = 0.75) e para a A2 (R² ajustado = 0.75), utilizando dados espectrais sem transformação. Conclui-se com este trabalho que os dados espectrais de laboratório (FieldSpec) foram mais eficientes na estimativa dos atributos texturais dos solos do que os dados do sensor aerotransportado (SpecTIR-VS), principalmente quando utilizado um conjunto de dados com solos e regiões distintos. Quando comparados os modelos preditivos, utilizando o comportamento espectral das amostras de solo com e sem matéria Orgânica, é possível perceber a melhoria na estimativa dos teores de areia e argila, após retirada a MO.Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solosHyperspectral remote sensing in estimating the granulometry of surface soil horizonsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisEspectrorradiometria de reflectânciaSensor aerotransportado SpecTIREspectrorradiômetro FieldSpecTextura do soloMatéria OrgânicaReflectance spectroradiometrySpecTIR airborne sensorFieldSpec SpectroradiometerSoil textureOrganic matterCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLOinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0002-2582-1521http://lattes.cnpq.br/4195918994374388http://lattes.cnpq.br/96464929238986492024-11-21ORIGINAL2020_tese_elalmeida.pdf2020_tese_elalmeida.pdfapplication/pdf6294650http://repositorio.ufc.br/bitstream/riufc/78944/4/2020_tese_elalmeida.pdf8d13a7e4b0fee6ac95ddff838dc8e7b8MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/78944/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55riufc/789442024-11-21 15:53:56.659oai:repositorio.ufc.br:riufc/78944Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-11-21T18:53:56Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
dc.title.en.pt_BR.fl_str_mv Hyperspectral remote sensing in estimating the granulometry of surface soil horizons
title Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
spellingShingle Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
Almeida, Eurileny Lucas de
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
Espectrorradiometria de reflectância
Sensor aerotransportado SpecTIR
Espectrorradiômetro FieldSpec
Textura do solo
Matéria Orgânica
Reflectance spectroradiometry
SpecTIR airborne sensor
FieldSpec Spectroradiometer
Soil texture
Organic matter
title_short Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
title_full Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
title_fullStr Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
title_full_unstemmed Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
title_sort Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos
author Almeida, Eurileny Lucas de
author_facet Almeida, Eurileny Lucas de
author_role author
dc.contributor.author.fl_str_mv Almeida, Eurileny Lucas de
dc.contributor.advisor1.fl_str_mv Teixeira, Adunias dos Santos
contributor_str_mv Teixeira, Adunias dos Santos
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
topic CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
Espectrorradiometria de reflectância
Sensor aerotransportado SpecTIR
Espectrorradiômetro FieldSpec
Textura do solo
Matéria Orgânica
Reflectance spectroradiometry
SpecTIR airborne sensor
FieldSpec Spectroradiometer
Soil texture
Organic matter
dc.subject.ptbr.pt_BR.fl_str_mv Espectrorradiometria de reflectância
Sensor aerotransportado SpecTIR
Espectrorradiômetro FieldSpec
Textura do solo
Matéria Orgânica
dc.subject.en.pt_BR.fl_str_mv Reflectance spectroradiometry
SpecTIR airborne sensor
FieldSpec Spectroradiometer
Soil texture
Organic matter
description The general objective of this research was to estimate soil texture, through its spectral behavior obtained by laboratory spectroradiometry and airborne sensors, with and without the interference of Organic Matter (OM) in different soils in the state of Ceará. The study was carried out in two different areas of the state of Ceará, in the municipalities of Morada Nova (A1) and Limoeiro do Norte (A2). 233 deformed soil samples were collected, from 0 to 10 cm deep. For each soil sample, particle size, OM and spectral data were obtained using the ProSpecTir-VS airborne sensor and the FieldSpec Pro FR 3 spectroradiometer sensor in the laboratory. To obtain spectral data in the laboratory, Oven-Dried Fine Earth at 45ºC (TFSE) and Fine Earth Without Organic Matter (TSOM) were used. A descriptive analysis of particle size and spectral data was carried out and Pearson's correlation was obtained between the sand, silt and clay contents and the reflectance of the soil without OM. In the analysis of spectral data acquired in the laboratory from soil samples, with and without Organic Matter, Principal Component Analysis - PCA was also applied. To estimate soil texture, all possible band relationships of the two sensors were tested in search of a Normalized Difference Index (NDI). In addition to reflectance, the spectral data were also analyzed in transformed form: Savitzky-Golay smoothing, 1st derivative and normalized. Partial Least Squares Regression (PLSR) was applied using all spectral data and after band selection. For model calibration, 70% of the soil samples were used and 30% for validation. The analyzes were carried out using the total set of data and separated by region (A1 and A2). Thus, it was observed that the soils in the A2 region (Irrigated Perimeter Jaguaribe Apodi) are more clayey than the soils in A1 (Irrigated Perimeter Morada Nova), with the latter having a predominance of silty and sandy soils. The best correlation results were from the proximal sensor, FieldSpec Pro FR 3, for clay, with a strong correlation of -0.74 and -0.71 for the complete sample and for the A1 region, respectively. The wavelengths chosen to construct the NDI were 2133 and 2335 nm, with a coefficient of determination (R²) of 0.67. The best validation results, using PLSR, were from the laboratory sensor with data in first derivative, with adjusted R² of 0.77 and 0.79 for clay using all data and for sand with A2 data, respectively. Regarding texture estimation for soil without OM, the best PLRS results were for sand with all normalized data (adjusted R² = 0.75) and for A2 (adjusted R² = 0.75), using spectral data without transformation. It is concluded from this work that laboratory spectral data (FieldSpec) were more efficient in estimating the textural attributes of soils than airborne sensor data (SpecTIR-VS), especially when using a data set with different soils and regions. . When comparing the predictive models, using the spectral behavior of soil samples with and without organic matter, it is possible to notice the improvement in the estimation of sand and clay contents, after removing the OM.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2024-11-21T18:52:23Z
dc.date.available.fl_str_mv 2024-11-21T18:52:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALMEIDA, Eurileny Lucas de. Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos. 2020. 118 f. Tese (Doutorado em Ciência do Solo) - Universidade Federal do Ceará, Fortaleza, 2020.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/78944
identifier_str_mv ALMEIDA, Eurileny Lucas de. Sensoriamento remoto hiperespectral na estimativa da granulometria de horizontes superficiais de solos. 2020. 118 f. Tese (Doutorado em Ciência do Solo) - Universidade Federal do Ceará, Fortaleza, 2020.
url http://repositorio.ufc.br/handle/riufc/78944
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/78944/4/2020_tese_elalmeida.pdf
http://repositorio.ufc.br/bitstream/riufc/78944/5/license.txt
bitstream.checksum.fl_str_mv 8d13a7e4b0fee6ac95ddff838dc8e7b8
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793325237600256