Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Araújo, Daniel Costa
Orientador(a): Mota, João César Moura
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/23478
Resumo: Massive MIMO has the potential of greatly increasing the system spectral efficiency by employing many individually steerable antenna elements at the base station (BS). This potential can only be achieved if the BS has sufficient channel state information (CSI) knowledge. The way of acquiring it depends on the duplexing mode employed by the communication system. Currently, frequency division duplexing (FDD) is the most used in the wireless communication system. However, the amount of overhead necessary to estimate the channel scales with the number of antennas which poses a big challenge in implementing massive MIMO systems with FDD protocol. To enable both operating together, this thesis tackles the channel estimation problem by proposing methods that exploit a compressed version of the massive MIMO channel. There are mainly two approaches used to achieve such a compression: sparsity and second order statistics. To derive sparsity-based techniques, this thesis uses a compressive sensing (CS) framework to extract a sparse-representation of the channel. This is investigated initially in a flat channel and afterwards in a frequency-selective one. In the former, we show that the Cramer-Rao lower bound (CRLB) for the problem is a function of pilot sequences that lead to a Grassmannian matrix. In the frequency-selective case, a novel estimator which combines CS and tensor analysis is derived. This new method uses the measurements obtained of the pilot subcarriers to estimate a sparse tensor channel representation. Assuming a Tucker3 model, the proposed solution maps the estimated sparse tensor to a full one which describes the spatial-frequency channel response. Furthermore, this thesis investigates the problem of updating the sparse basis that arises when the user is moving. In this study, an algorithm is proposed to track the arrival and departure directions using very few pilots. Besides the sparsity-based techniques, this thesis investigates the channel estimation performance using a statistical approach. In such a case, a new hybrid beamforming (HB) architecture is proposed to spatially multiplex the pilot sequences and to reduce the overhead. More specifically, the new solution creates a set of beams that is jointly calculated with the channel estimator and the pilot power allocation using the minimum mean square error (MMSE) criterion. We show that this provides enhanced performance for the estimation process in low signal-noise ratio (SNR) scenarios.
id UFC-7_3be36b721804cf6ab75e9e4897da4b7d
oai_identifier_str oai:repositorio.ufc.br:riufc/23478
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Araújo, Daniel CostaMota, João César Moura2017-06-21T16:17:55Z2017-06-21T16:17:55Z2016ARAÚJO, D. C. Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches. 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/23478Massive MIMO has the potential of greatly increasing the system spectral efficiency by employing many individually steerable antenna elements at the base station (BS). This potential can only be achieved if the BS has sufficient channel state information (CSI) knowledge. The way of acquiring it depends on the duplexing mode employed by the communication system. Currently, frequency division duplexing (FDD) is the most used in the wireless communication system. However, the amount of overhead necessary to estimate the channel scales with the number of antennas which poses a big challenge in implementing massive MIMO systems with FDD protocol. To enable both operating together, this thesis tackles the channel estimation problem by proposing methods that exploit a compressed version of the massive MIMO channel. There are mainly two approaches used to achieve such a compression: sparsity and second order statistics. To derive sparsity-based techniques, this thesis uses a compressive sensing (CS) framework to extract a sparse-representation of the channel. This is investigated initially in a flat channel and afterwards in a frequency-selective one. In the former, we show that the Cramer-Rao lower bound (CRLB) for the problem is a function of pilot sequences that lead to a Grassmannian matrix. In the frequency-selective case, a novel estimator which combines CS and tensor analysis is derived. This new method uses the measurements obtained of the pilot subcarriers to estimate a sparse tensor channel representation. Assuming a Tucker3 model, the proposed solution maps the estimated sparse tensor to a full one which describes the spatial-frequency channel response. Furthermore, this thesis investigates the problem of updating the sparse basis that arises when the user is moving. In this study, an algorithm is proposed to track the arrival and departure directions using very few pilots. Besides the sparsity-based techniques, this thesis investigates the channel estimation performance using a statistical approach. In such a case, a new hybrid beamforming (HB) architecture is proposed to spatially multiplex the pilot sequences and to reduce the overhead. More specifically, the new solution creates a set of beams that is jointly calculated with the channel estimator and the pilot power allocation using the minimum mean square error (MMSE) criterion. We show that this provides enhanced performance for the estimation process in low signal-noise ratio (SNR) scenarios.Pesquisas em sistemas MIMO massivo (do inglês multiple-input multiple-output) ganha- ram muita atenção da comunidade científica devido ao seu potencial em aumentar a eficiência espectral do sistema comunicações sem-fio utilizando centenas de elementos de antenas na estação de base (EB). Porém, tal potencial só poderá é obtido se a EB possuir suficiente informação do estado de canal. A maneira de adquiri-lo depende de como os recursos de comunicação tempo-frequência são empregados. Atualmente, a solução mais utilizada em sistemas de comunicação sem fio é a multiplexação por divisão na frequência (FDD) dos pilotos. Porém, o grande desafio em implementar esse tipo solução é porque a quantidade de tons pilotos exigidos para estimar o canal aumenta com o número de antenas. Isso resulta na perda do eficiência espectral prometido pelo sistema massivo. Esta tese apresenta métodos de estimação de canal que demandam uma quantidade de tons pilotos reduzida, mas mantendo alta precisão na estimação do canal. Esta redução de tons pilotos é obtida porque os estimadores propostos exploram a estrutura do canal para obter uma redução das dimensões do canal. Nesta tese, existem essencialmente duas abordagens utilizadas para alcançar tal redução de dimensionalidade: uma é através da esparsidade e a outra através das estatísticas de segunda ordem. Para derivar as soluções que exploram a esparsidade do canal, o estimador de canal é obtido usando a teoria de “compressive sensing” (CS) para extrair a representação esparsa do canal. A teoria é aplicada inicialmente ao problem de estimação de canais seletivos e não-seletivos em frequência. No primeiro caso, é mostrado que limitante de Cramer-Rao (CRLB) é definido como uma função das sequências pilotos que geram uma matriz Grassmaniana. No segundo caso, CS e a análise tensorial são combinado para derivar um novo algoritmo de estimatição baseado em decomposição tensorial esparsa para canais com seletividade em frequência. Usando o modelo Tucker3, a solução proposta mapeia o tensor esparso para um tensor cheio o qual descreve a resposta do canal no espaço e na frequência. Além disso, a tese investiga a otimização da base de representação esparsa propondo um método para estimar e corrigir as variações dos ângulos de chegada e de partida, causados pela mobilidade do usuário. Além das técnicas baseadas em esparsidade, esta tese investida aquelas que usam o conhecimento estatístico do canal. Neste caso, uma nova arquitetura de beamforming híbrido é proposta para realizar multiplexação das sequências pilotos. A nova solução consite em criar um conjunto de feixes, que são calculados conjuntamente com o estimator de canal e alocação de potência para os pilotos, usand o critério de minimização erro quadrático médio. É mostrado que esta solução reduz a sequencia pilot e mostra bom desempenho e cenários de baixa relação sinal ruído (SNR).TeleinformáticaAnálise tensorialSistemas de comunicação sem fioHybrid beamformingSparsityTensor analysisMassive MIMOChannel estimationCompressive sensingChannel estimation techniques applied to massive MIMO systems using sparsity and statistics approachesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/23478/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2016_tese_dcaraújo.pdf2016_tese_dcaraújo.pdfapplication/pdf1832588http://repositorio.ufc.br/bitstream/riufc/23478/1/2016_tese_dcara%c3%bajo.pdfa4bb5d44287b92a9321d5fcc3589f22eMD51riufc/234782020-11-26 17:39:00.748oai:repositorio.ufc.br:riufc/23478Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-11-26T20:39Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
title Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
spellingShingle Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
Araújo, Daniel Costa
Teleinformática
Análise tensorial
Sistemas de comunicação sem fio
Hybrid beamforming
Sparsity
Tensor analysis
Massive MIMO
Channel estimation
Compressive sensing
title_short Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
title_full Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
title_fullStr Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
title_full_unstemmed Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
title_sort Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches
author Araújo, Daniel Costa
author_facet Araújo, Daniel Costa
author_role author
dc.contributor.author.fl_str_mv Araújo, Daniel Costa
dc.contributor.advisor1.fl_str_mv Mota, João César Moura
contributor_str_mv Mota, João César Moura
dc.subject.por.fl_str_mv Teleinformática
Análise tensorial
Sistemas de comunicação sem fio
Hybrid beamforming
Sparsity
Tensor analysis
Massive MIMO
Channel estimation
Compressive sensing
topic Teleinformática
Análise tensorial
Sistemas de comunicação sem fio
Hybrid beamforming
Sparsity
Tensor analysis
Massive MIMO
Channel estimation
Compressive sensing
description Massive MIMO has the potential of greatly increasing the system spectral efficiency by employing many individually steerable antenna elements at the base station (BS). This potential can only be achieved if the BS has sufficient channel state information (CSI) knowledge. The way of acquiring it depends on the duplexing mode employed by the communication system. Currently, frequency division duplexing (FDD) is the most used in the wireless communication system. However, the amount of overhead necessary to estimate the channel scales with the number of antennas which poses a big challenge in implementing massive MIMO systems with FDD protocol. To enable both operating together, this thesis tackles the channel estimation problem by proposing methods that exploit a compressed version of the massive MIMO channel. There are mainly two approaches used to achieve such a compression: sparsity and second order statistics. To derive sparsity-based techniques, this thesis uses a compressive sensing (CS) framework to extract a sparse-representation of the channel. This is investigated initially in a flat channel and afterwards in a frequency-selective one. In the former, we show that the Cramer-Rao lower bound (CRLB) for the problem is a function of pilot sequences that lead to a Grassmannian matrix. In the frequency-selective case, a novel estimator which combines CS and tensor analysis is derived. This new method uses the measurements obtained of the pilot subcarriers to estimate a sparse tensor channel representation. Assuming a Tucker3 model, the proposed solution maps the estimated sparse tensor to a full one which describes the spatial-frequency channel response. Furthermore, this thesis investigates the problem of updating the sparse basis that arises when the user is moving. In this study, an algorithm is proposed to track the arrival and departure directions using very few pilots. Besides the sparsity-based techniques, this thesis investigates the channel estimation performance using a statistical approach. In such a case, a new hybrid beamforming (HB) architecture is proposed to spatially multiplex the pilot sequences and to reduce the overhead. More specifically, the new solution creates a set of beams that is jointly calculated with the channel estimator and the pilot power allocation using the minimum mean square error (MMSE) criterion. We show that this provides enhanced performance for the estimation process in low signal-noise ratio (SNR) scenarios.
publishDate 2016
dc.date.issued.fl_str_mv 2016
dc.date.accessioned.fl_str_mv 2017-06-21T16:17:55Z
dc.date.available.fl_str_mv 2017-06-21T16:17:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ARAÚJO, D. C. Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches. 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/23478
identifier_str_mv ARAÚJO, D. C. Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches. 2016. 124 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.
url http://www.repositorio.ufc.br/handle/riufc/23478
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/23478/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/23478/1/2016_tese_dcara%c3%bajo.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
a4bb5d44287b92a9321d5fcc3589f22e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793114992869376