Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso embargado |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/81408 |
Resumo: | Regression models for data with bounded support, particularly within the unit interval, are widely used in the literature to model percentages, proportions, or rates. Recently, these models have garnered significant attention from the statistical community. Among the existing proposals, notable models include beta regression, simplex models, Kumaraswamy models, Johnson Sb models, and more recently, unit Weibull models, among others. In this work, we focus on the unit Gamma regression model and its extensions from a Bayesian perspective, which offers several advantages over classical inference, such as eliminating the need for asymptotic results, particularly in complex models. Within the context of this model, we propose a comprehensive framework for parameter estimation, model fit assessment, model comparison, and influence analysis. This is achieved using the Bayesian approach through stochastic simulation algorithms based on Markov Chain Monte Carlo (MCMC) methods. |
| id |
UFC-7_4250a1cbccf7a635b1d9a889acd9ca97 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/81408 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Rocha, Éric OliveiraNobre, Juvêncio Santos2025-06-26T18:55:35Z2025-06-26T18:55:35Z2025-02ROCHA, Éric Oliveira. Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana. 2025. 164 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, 2025.http://repositorio.ufc.br/handle/riufc/81408Regression models for data with bounded support, particularly within the unit interval, are widely used in the literature to model percentages, proportions, or rates. Recently, these models have garnered significant attention from the statistical community. Among the existing proposals, notable models include beta regression, simplex models, Kumaraswamy models, Johnson Sb models, and more recently, unit Weibull models, among others. In this work, we focus on the unit Gamma regression model and its extensions from a Bayesian perspective, which offers several advantages over classical inference, such as eliminating the need for asymptotic results, particularly in complex models. Within the context of this model, we propose a comprehensive framework for parameter estimation, model fit assessment, model comparison, and influence analysis. This is achieved using the Bayesian approach through stochastic simulation algorithms based on Markov Chain Monte Carlo (MCMC) methods.Modelos de regressão para dados com suporte limitado, especialmente no intervalo unitário,são amplamente utilizados na literatura para modelar porcentagens, proporções ou taxas. Ultimamente, estes modelos receberam bastante atenção da comunidade estatística, e dentre as propostas existentes, destacam-se os modelos de regressão beta, os modelos simplex, os modelos Kumaraswamy, os modelos Johnson Sb e, mais recentemente, os modelos Weibull unitária, entre outros. Neste trabalho, abordamos o modelo de regressão Gama unitária e suas extensões sob a perspectiva Bayesiana, que oferece algumas vantagens em relação à inferência clássica, como dispensar a necessidade de resultados assintóticos para a inferência, especialmente em modelos complexos. No contexto desse modelo, propomos todo o processo de estimação de parâmetros, avaliação de ajuste, comparação de modelos e análise de influência, utilizando a abordagem Bayesiana por meio de Algoritmos de simulação estocástica via Monte Carlo em Cadeias de Markov (MCMC).Modelos de regressão gama unitária e extensões sob a abordagem BayesianaUnit gamma regression models and extensions under the Bayesian approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisInferência bayesianaDistribuição Gama UnitáriaModelos de regressão bayesianosModelos de misturaMonte Carlo via cadeia de MarkovUnit Gamma DistributionBayesian inferenceBayesian regression modelsMixture modelsMonte Carlo Markov ChainCNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASinfo:eu-repo/semantics/embargoedAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0002-7321-3221http://lattes.cnpq.br/46100250581157962027-02-18ORIGINAL2025_dis_eorocha.pdf2025_dis_eorocha.pdfDissertação Versão FInalapplication/pdf6497831http://repositorio.ufc.br/bitstream/riufc/81408/2/2025_dis_eorocha.pdfd1881297235a03cded7c002042936a11MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/81408/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53riufc/814082025-06-26 15:55:36.394oai:repositorio.ufc.br:riufc/81408Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-06-26T18:55:36Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana |
| dc.title.en.pt_BR.fl_str_mv |
Unit gamma regression models and extensions under the Bayesian approach |
| title |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana |
| spellingShingle |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana Rocha, Éric Oliveira CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS Inferência bayesiana Distribuição Gama Unitária Modelos de regressão bayesianos Modelos de mistura Monte Carlo via cadeia de Markov Unit Gamma Distribution Bayesian inference Bayesian regression models Mixture models Monte Carlo Markov Chain |
| title_short |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana |
| title_full |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana |
| title_fullStr |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana |
| title_full_unstemmed |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana |
| title_sort |
Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana |
| author |
Rocha, Éric Oliveira |
| author_facet |
Rocha, Éric Oliveira |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Rocha, Éric Oliveira |
| dc.contributor.advisor1.fl_str_mv |
Nobre, Juvêncio Santos |
| contributor_str_mv |
Nobre, Juvêncio Santos |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS Inferência bayesiana Distribuição Gama Unitária Modelos de regressão bayesianos Modelos de mistura Monte Carlo via cadeia de Markov Unit Gamma Distribution Bayesian inference Bayesian regression models Mixture models Monte Carlo Markov Chain |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Inferência bayesiana Distribuição Gama Unitária Modelos de regressão bayesianos Modelos de mistura Monte Carlo via cadeia de Markov |
| dc.subject.en.pt_BR.fl_str_mv |
Unit Gamma Distribution Bayesian inference Bayesian regression models Mixture models Monte Carlo Markov Chain |
| description |
Regression models for data with bounded support, particularly within the unit interval, are widely used in the literature to model percentages, proportions, or rates. Recently, these models have garnered significant attention from the statistical community. Among the existing proposals, notable models include beta regression, simplex models, Kumaraswamy models, Johnson Sb models, and more recently, unit Weibull models, among others. In this work, we focus on the unit Gamma regression model and its extensions from a Bayesian perspective, which offers several advantages over classical inference, such as eliminating the need for asymptotic results, particularly in complex models. Within the context of this model, we propose a comprehensive framework for parameter estimation, model fit assessment, model comparison, and influence analysis. This is achieved using the Bayesian approach through stochastic simulation algorithms based on Markov Chain Monte Carlo (MCMC) methods. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-06-26T18:55:35Z |
| dc.date.available.fl_str_mv |
2025-06-26T18:55:35Z |
| dc.date.issued.fl_str_mv |
2025-02 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ROCHA, Éric Oliveira. Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana. 2025. 164 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/81408 |
| identifier_str_mv |
ROCHA, Éric Oliveira. Modelos de regressão gama unitária e extensões sob a abordagem Bayesiana. 2025. 164 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, 2025. |
| url |
http://repositorio.ufc.br/handle/riufc/81408 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/81408/2/2025_dis_eorocha.pdf http://repositorio.ufc.br/bitstream/riufc/81408/3/license.txt |
| bitstream.checksum.fl_str_mv |
d1881297235a03cded7c002042936a11 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793302201434112 |