Triângulo harmônico e de Leibniz

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Camurça, Antonildo Elias
Orientador(a): Melo, Marcelo Ferreira de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/73519
Resumo: This work aims to present theoretical material on Leibniz's harmonic triangle, its relationship with the series, the harmonic series and with Pascal's triangle, as well as to gather and bring to the knowledge of the public that appreciates the standards of mathematics, whether they are students of the high school or higher education, a basis throughout the studies for the development of such knowledge. The harmonic triangle was defined by Leibniz (1646-1716) in 1673, with a definition related to the successive differences of the harmonic series, and such a definition was possible due to the fact that Leibniz had studied several different mathematical texts throughout your life. The formation of this harmonic triangle is made by the reciprocal of the elements of Pascal's triangle times their own numbers. This harmonic triangle allows you to work with series and can even be used to calculate areas. This definition was made from the study of the harmonic series, and after analysis of its properties, used to perform the finite and infinite sums of series through a procedure called, by Leibniz, “sum of all differences”.
id UFC-7_454455e61826cb0a2ddbd3125c808482
oai_identifier_str oai:repositorio.ufc.br:riufc/73519
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Camurça, Antonildo EliasMelo, Marcelo Ferreira de2023-07-13T20:31:06Z2023-07-13T20:31:06Z2023CAMURÇA, Antonildo Elias.Triângulo harmônico e de Leibniz. 2023. 56 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 2023.http://www.repositorio.ufc.br/handle/riufc/73519This work aims to present theoretical material on Leibniz's harmonic triangle, its relationship with the series, the harmonic series and with Pascal's triangle, as well as to gather and bring to the knowledge of the public that appreciates the standards of mathematics, whether they are students of the high school or higher education, a basis throughout the studies for the development of such knowledge. The harmonic triangle was defined by Leibniz (1646-1716) in 1673, with a definition related to the successive differences of the harmonic series, and such a definition was possible due to the fact that Leibniz had studied several different mathematical texts throughout your life. The formation of this harmonic triangle is made by the reciprocal of the elements of Pascal's triangle times their own numbers. This harmonic triangle allows you to work with series and can even be used to calculate areas. This definition was made from the study of the harmonic series, and after analysis of its properties, used to perform the finite and infinite sums of series through a procedure called, by Leibniz, “sum of all differences”.Este trabalho tem por objetivo apresentar um material teórico sobre o triângulo harmônico de Leibniz, sua relação com as séries, a série harmônica e com o triângulo de Pascal, bem como reunir e levar ao conhecimento do público apreciador dos padrões da matemática, sejam alunos do ensino médio ou de nível superior, um embasamento ao longo dos estudos para desenvolvimento de tal conhecimento. O triângulo harmônico foi definido por Leibniz (1646-1716) em 1673, com definição relacionada às diferenças sucessivas da série harmônica, e tal definição foi possível pelo fato de Leibniz ter estudado diversos textos matemáticos diferentes ao longo de sua vida. A formação desse triângulo harmônico é feita pelo recíproco dos elementos do triângulo de Pascal vezes seus próprios números. Este triângulo harmônico permite trabalhar com séries e pode até ser usado para calcular áreas. Tal definição foi feita a partir do estudo da série harmônica, e após análise de suas propriedades, utilizado para realizar as somas finitas e infinitas de séries por meio de um procedimento chamado, por Leibniz, de “soma de todas as diferenças”.SériesSérie harmônicaTriângulo de PascalBinômio de NewtonTriângulo harmônicoHarmonic seriesPascal's triangleNewton's binomialHarmonic triangleTriângulo harmônico e de LeibnizHarmonic and Leibniz triangleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2023_dis_aecamurca.pdf2023_dis_aecamurca.pdfapplication/pdf874998http://repositorio.ufc.br/bitstream/riufc/73519/3/2023_dis_aecamurca.pdfd1908aa2e4dff109bc17abd142b288a4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/73519/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/735192023-07-17 10:06:37.517oai:repositorio.ufc.br:riufc/73519Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-07-17T13:06:37Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Triângulo harmônico e de Leibniz
dc.title.en.pt_BR.fl_str_mv Harmonic and Leibniz triangle
title Triângulo harmônico e de Leibniz
spellingShingle Triângulo harmônico e de Leibniz
Camurça, Antonildo Elias
Séries
Série harmônica
Triângulo de Pascal
Binômio de Newton
Triângulo harmônico
Harmonic series
Pascal's triangle
Newton's binomial
Harmonic triangle
title_short Triângulo harmônico e de Leibniz
title_full Triângulo harmônico e de Leibniz
title_fullStr Triângulo harmônico e de Leibniz
title_full_unstemmed Triângulo harmônico e de Leibniz
title_sort Triângulo harmônico e de Leibniz
author Camurça, Antonildo Elias
author_facet Camurça, Antonildo Elias
author_role author
dc.contributor.author.fl_str_mv Camurça, Antonildo Elias
dc.contributor.advisor1.fl_str_mv Melo, Marcelo Ferreira de
contributor_str_mv Melo, Marcelo Ferreira de
dc.subject.por.fl_str_mv Séries
Série harmônica
Triângulo de Pascal
Binômio de Newton
Triângulo harmônico
Harmonic series
Pascal's triangle
Newton's binomial
Harmonic triangle
topic Séries
Série harmônica
Triângulo de Pascal
Binômio de Newton
Triângulo harmônico
Harmonic series
Pascal's triangle
Newton's binomial
Harmonic triangle
description This work aims to present theoretical material on Leibniz's harmonic triangle, its relationship with the series, the harmonic series and with Pascal's triangle, as well as to gather and bring to the knowledge of the public that appreciates the standards of mathematics, whether they are students of the high school or higher education, a basis throughout the studies for the development of such knowledge. The harmonic triangle was defined by Leibniz (1646-1716) in 1673, with a definition related to the successive differences of the harmonic series, and such a definition was possible due to the fact that Leibniz had studied several different mathematical texts throughout your life. The formation of this harmonic triangle is made by the reciprocal of the elements of Pascal's triangle times their own numbers. This harmonic triangle allows you to work with series and can even be used to calculate areas. This definition was made from the study of the harmonic series, and after analysis of its properties, used to perform the finite and infinite sums of series through a procedure called, by Leibniz, “sum of all differences”.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-07-13T20:31:06Z
dc.date.available.fl_str_mv 2023-07-13T20:31:06Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAMURÇA, Antonildo Elias.Triângulo harmônico e de Leibniz. 2023. 56 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/73519
identifier_str_mv CAMURÇA, Antonildo Elias.Triângulo harmônico e de Leibniz. 2023. 56 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, 2023.
url http://www.repositorio.ufc.br/handle/riufc/73519
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/73519/3/2023_dis_aecamurca.pdf
http://repositorio.ufc.br/bitstream/riufc/73519/4/license.txt
bitstream.checksum.fl_str_mv d1908aa2e4dff109bc17abd142b288a4
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793216153190400