Application of clustering methods for hydrological Regionalization using the camels-br database

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Oliveira, Thaís Antero de
Orientador(a): Souza Filho, Francisco de Assis de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: http://repositorio.ufc.br/handle/riufc/74618
Resumo: The catchments parameters regionalization is crucial for streamflow prediction in ungauged basins model parameterization and watershed development and management. To overcome the limitation of reduced amount of hydrological data the Catchment Attributes and MEteorology for Large-sample Studies – Brazil (CAMELS – BR) was produced and made publicly available. Limited application of clustering methods in catchment analysis in Brazil particularly using the CAMELS-BR dataset highlights a research gap in the literature. This study presents a robust catchment clustering methodology that incorporates multiple clustering methods and addresses their divergences applied to the CAMELS-BR dataset. The methodology introduced in this study involves a multi-method clustering approach that combines the K-means Partitioning Around Medoids (PAM) and Fuzzy C-means (FCM) techniques. The literature has not explored the establishment of a consensus among clustering methods for classification unlike the methodology proposed in this study which emphasizes deriving a classification based on collective agreement among multiple methods rather than relying solely on individual performance metrics. The hydrological clustering conducted in this study shows a low level of agreement with the hydrographic regions defined by ANA.
id UFC-7_4fb7254cc14a6d29167e2ae90aee0bc9
oai_identifier_str oai:repositorio.ufc.br:riufc/74618
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Oliveira, Thaís Antero deSouza Filho, Francisco de Assis de2023-10-09T12:12:19Z2023-10-09T12:12:19Z2023OLIVEIRA, T.A. Application of clustering methods for hydrological Regionalization using the camels-br database. 2023. 78f. Dissertação ( Mestrado em Engenharia Civil - Recursos Hídricos ) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.http://repositorio.ufc.br/handle/riufc/74618The catchments parameters regionalization is crucial for streamflow prediction in ungauged basins model parameterization and watershed development and management. To overcome the limitation of reduced amount of hydrological data the Catchment Attributes and MEteorology for Large-sample Studies – Brazil (CAMELS – BR) was produced and made publicly available. Limited application of clustering methods in catchment analysis in Brazil particularly using the CAMELS-BR dataset highlights a research gap in the literature. This study presents a robust catchment clustering methodology that incorporates multiple clustering methods and addresses their divergences applied to the CAMELS-BR dataset. The methodology introduced in this study involves a multi-method clustering approach that combines the K-means Partitioning Around Medoids (PAM) and Fuzzy C-means (FCM) techniques. The literature has not explored the establishment of a consensus among clustering methods for classification unlike the methodology proposed in this study which emphasizes deriving a classification based on collective agreement among multiple methods rather than relying solely on individual performance metrics. The hydrological clustering conducted in this study shows a low level of agreement with the hydrographic regions defined by ANA.previsão de vazão em bacias não monitoradas parametrização de modelos e desenvolvimento e gestão de bacias. Para superar a limitação de quantidade reduzida de dados hidrológicos foi produzido e disponibilizado publicamente o conjunto de dados Catchment Attributes and MEteorology for Large-sample Studies – Brazil (CAMELS-BR). A aplicação limitada de métodos de clusterização na análise de bacias hidrográficas no Brasil especialmente utilizando o conjunto de dados CAMELS-BR destaca uma lacuna na pesquisa científica. Este estudo apresenta uma metodologia robusta de clusterização de bacias hidrográficas que incorpora múltiplos métodos de clusterização e aborda suas divergências utilizando os dados do CAMELS-BR. A metodologia introduzida neste estudo envolve uma abordagem de clusterização multi-método que combina as técnicas K-means Partitioning Around Medoids (PAM) e Fuzzy C-means (FCM). A literatura não explorou o estabelecimento de um consenso entre osmétodos de clusterização para classificação ao contrário dametodologia proposta neste estudo que enfatiza a obtenção de uma classificação baseada no acordo coletivo entremúltiplos métodos em vez de depender exclusivamente de métricas de desempenho individuais. A clusterização hidrológica realizada neste estudo apresenta um baixo nível de concordância com as regiões hidrográficas definidas pela ANA.Oliveira, T.A. Application of clustering methods for hydrological Regionalization using the camels-br database. 2023. 78f. Dissertação ( Mestrado em Engenharia Civil - Recursos Hídricos ) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.Application of clustering methods for hydrological Regionalization using the camels-br databaseApplication of clustering methods for hydrological Regionalization using the camels-br databaseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisClassificação hidrológicaClusterizaçãoCAMELSBacias hidrográficashydrological classification; multi-method.Clustering; CAMELS;info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/2651598957028403https://buscatextual.cnpq.br/buscatextual/busca.do#2023-06-20ORIGINAL2023_dis_taolveira.pdf2023_dis_taolveira.pdfapplication/pdf3111635http://repositorio.ufc.br/bitstream/riufc/74618/7/2023_dis_taolveira.pdfacc31bd99156eb904b4347948306b186MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/74618/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58riufc/746182023-10-09 09:12:20.177oai:repositorio.ufc.br:riufc/74618Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-10-09T12:12:20Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Application of clustering methods for hydrological Regionalization using the camels-br database
dc.title.en.pt_BR.fl_str_mv Application of clustering methods for hydrological Regionalization using the camels-br database
title Application of clustering methods for hydrological Regionalization using the camels-br database
spellingShingle Application of clustering methods for hydrological Regionalization using the camels-br database
Oliveira, Thaís Antero de
Classificação hidrológica
Clusterização
CAMELS
Bacias hidrográficas
hydrological classification; multi-method.
Clustering; CAMELS;
title_short Application of clustering methods for hydrological Regionalization using the camels-br database
title_full Application of clustering methods for hydrological Regionalization using the camels-br database
title_fullStr Application of clustering methods for hydrological Regionalization using the camels-br database
title_full_unstemmed Application of clustering methods for hydrological Regionalization using the camels-br database
title_sort Application of clustering methods for hydrological Regionalization using the camels-br database
author Oliveira, Thaís Antero de
author_facet Oliveira, Thaís Antero de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Thaís Antero de
dc.contributor.advisor1.fl_str_mv Souza Filho, Francisco de Assis de
contributor_str_mv Souza Filho, Francisco de Assis de
dc.subject.ptbr.pt_BR.fl_str_mv Classificação hidrológica
Clusterização
CAMELS
Bacias hidrográficas
topic Classificação hidrológica
Clusterização
CAMELS
Bacias hidrográficas
hydrological classification; multi-method.
Clustering; CAMELS;
dc.subject.en.pt_BR.fl_str_mv hydrological classification; multi-method.
Clustering; CAMELS;
description The catchments parameters regionalization is crucial for streamflow prediction in ungauged basins model parameterization and watershed development and management. To overcome the limitation of reduced amount of hydrological data the Catchment Attributes and MEteorology for Large-sample Studies – Brazil (CAMELS – BR) was produced and made publicly available. Limited application of clustering methods in catchment analysis in Brazil particularly using the CAMELS-BR dataset highlights a research gap in the literature. This study presents a robust catchment clustering methodology that incorporates multiple clustering methods and addresses their divergences applied to the CAMELS-BR dataset. The methodology introduced in this study involves a multi-method clustering approach that combines the K-means Partitioning Around Medoids (PAM) and Fuzzy C-means (FCM) techniques. The literature has not explored the establishment of a consensus among clustering methods for classification unlike the methodology proposed in this study which emphasizes deriving a classification based on collective agreement among multiple methods rather than relying solely on individual performance metrics. The hydrological clustering conducted in this study shows a low level of agreement with the hydrographic regions defined by ANA.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-10-09T12:12:19Z
dc.date.available.fl_str_mv 2023-10-09T12:12:19Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, T.A. Application of clustering methods for hydrological Regionalization using the camels-br database. 2023. 78f. Dissertação ( Mestrado em Engenharia Civil - Recursos Hídricos ) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/74618
identifier_str_mv OLIVEIRA, T.A. Application of clustering methods for hydrological Regionalization using the camels-br database. 2023. 78f. Dissertação ( Mestrado em Engenharia Civil - Recursos Hídricos ) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
url http://repositorio.ufc.br/handle/riufc/74618
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/74618/7/2023_dis_taolveira.pdf
http://repositorio.ufc.br/bitstream/riufc/74618/8/license.txt
bitstream.checksum.fl_str_mv acc31bd99156eb904b4347948306b186
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793103952412672