Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/59231 |
Resumo: | The use of models to predict company insolvency and bankruptcy are common themes in the literature. It is in the interest of managers and other stakeholders, such as shareholders, to use indicators to try to identify whether a company is close to bankruptcy or not. The objective of this work is to use an econometric model to predict insolvency. The post-lasso logit regression model was used to predict the insolvency of Brazilian companies listed on B3 for the years 2018 and 2019. The data used consist of the financial statements of these companies. As explanatory variables, accounting indices from the literature were used. The year 2019 was used to classify between solvent and insolvent companies, while the year 2018 was used to estimate the models, so that there is a time difference between the accounting indicators and the insolvency event. For comparative purposes, two other logit models with different variables were estimated. The results show good predictive performance of the models, as well as a good fit to the data. The post-lasso logit model had the best predictive performance when compared to the other two models, with the correctly predicted percentage, sensitivity and specificity all above 90%. |
| id |
UFC-7_5163e15a38201f8f4e2350e47dbcbd4c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/59231 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Rodrigues, Rondinelly CoelhoSouza, Sérgio Aquino de2021-06-28T12:20:48Z2021-06-28T12:20:48Z2021RODRIGUES, Rondinelly Coelho. Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019. 2021. 35f. Dissertação (Mestrado em Economia de Empresas) - Faculdade de Economia, Administração, Atuária e Contabilidade - FEAAC, Programa de Economia Profissional - PEP, Universidade Federal do Ceará - UFC, Fortaleza (CE), 2021.http://www.repositorio.ufc.br/handle/riufc/59231The use of models to predict company insolvency and bankruptcy are common themes in the literature. It is in the interest of managers and other stakeholders, such as shareholders, to use indicators to try to identify whether a company is close to bankruptcy or not. The objective of this work is to use an econometric model to predict insolvency. The post-lasso logit regression model was used to predict the insolvency of Brazilian companies listed on B3 for the years 2018 and 2019. The data used consist of the financial statements of these companies. As explanatory variables, accounting indices from the literature were used. The year 2019 was used to classify between solvent and insolvent companies, while the year 2018 was used to estimate the models, so that there is a time difference between the accounting indicators and the insolvency event. For comparative purposes, two other logit models with different variables were estimated. The results show good predictive performance of the models, as well as a good fit to the data. The post-lasso logit model had the best predictive performance when compared to the other two models, with the correctly predicted percentage, sensitivity and specificity all above 90%.A utilização de modelos para previsão de insolvência e falência de empresas são temas comuns na literatura. É de interesse dos gestores e demais interessados, como acionistas, utilizar indicadores para tentar identificar se uma empresa está próxima a falência ou não. O objetivo desse trabalho é utilizar um modelo econométrico para previsão de insolvência. Utilizou-se o modelo de regressão pós-lasso logit para prever a insolvência de empresas brasileiras listadas na B3 para os anos de 2018 e 2019. Os dados utilizados consistem nos demonstrativos financeiros dessas empresas. Como variáveis explicativas foram utilizados índices contábeis da literatura. O ano de 2019 foi utilizado para classificar entre empresas solventes e insolventes, já o ano de 2018 foi utilizado para estimar os modelos, de modo que haja uma diferença temporal entre os indicadores contábeis e o evento de insolvência. Para efeito comparativo foram estimados outros dois modelos logit com variáveis diferentes. Os resultados mostram bom desempenho preditivo dos modelos, bem como bom ajuste aos dados. O modelo pós-lasso logit foi o de melhor performance preditiva quando comparado aos outros dois modelos, com o percentual corretamente previsto, sensibilidade e especificidade todos acima de 90%.InsolvênciaLogitLassoContabilidadePrevisão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_dis_rcrodrigues.pdf2021_dis_rcrodrigues.pdfapplication/pdf413852http://repositorio.ufc.br/bitstream/riufc/59231/1/2021_dis_rcrodrigues.pdf60e17f642711c599cf02af10368acef7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/59231/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/592312023-08-17 16:10:27.917oai:repositorio.ufc.br:riufc/59231Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-08-17T19:10:27Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 |
| title |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 |
| spellingShingle |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 Rodrigues, Rondinelly Coelho Insolvência Logit Lasso Contabilidade |
| title_short |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 |
| title_full |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 |
| title_fullStr |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 |
| title_full_unstemmed |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 |
| title_sort |
Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019 |
| author |
Rodrigues, Rondinelly Coelho |
| author_facet |
Rodrigues, Rondinelly Coelho |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Rodrigues, Rondinelly Coelho |
| dc.contributor.advisor1.fl_str_mv |
Souza, Sérgio Aquino de |
| contributor_str_mv |
Souza, Sérgio Aquino de |
| dc.subject.por.fl_str_mv |
Insolvência Logit Lasso Contabilidade |
| topic |
Insolvência Logit Lasso Contabilidade |
| description |
The use of models to predict company insolvency and bankruptcy are common themes in the literature. It is in the interest of managers and other stakeholders, such as shareholders, to use indicators to try to identify whether a company is close to bankruptcy or not. The objective of this work is to use an econometric model to predict insolvency. The post-lasso logit regression model was used to predict the insolvency of Brazilian companies listed on B3 for the years 2018 and 2019. The data used consist of the financial statements of these companies. As explanatory variables, accounting indices from the literature were used. The year 2019 was used to classify between solvent and insolvent companies, while the year 2018 was used to estimate the models, so that there is a time difference between the accounting indicators and the insolvency event. For comparative purposes, two other logit models with different variables were estimated. The results show good predictive performance of the models, as well as a good fit to the data. The post-lasso logit model had the best predictive performance when compared to the other two models, with the correctly predicted percentage, sensitivity and specificity all above 90%. |
| publishDate |
2021 |
| dc.date.accessioned.fl_str_mv |
2021-06-28T12:20:48Z |
| dc.date.available.fl_str_mv |
2021-06-28T12:20:48Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
RODRIGUES, Rondinelly Coelho. Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019. 2021. 35f. Dissertação (Mestrado em Economia de Empresas) - Faculdade de Economia, Administração, Atuária e Contabilidade - FEAAC, Programa de Economia Profissional - PEP, Universidade Federal do Ceará - UFC, Fortaleza (CE), 2021. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/59231 |
| identifier_str_mv |
RODRIGUES, Rondinelly Coelho. Previsão de insolvência baseado em dados contábeis de empresas brasileiras listadas na Bolsa de Valores nos anos de 2018 e 2019. 2021. 35f. Dissertação (Mestrado em Economia de Empresas) - Faculdade de Economia, Administração, Atuária e Contabilidade - FEAAC, Programa de Economia Profissional - PEP, Universidade Federal do Ceará - UFC, Fortaleza (CE), 2021. |
| url |
http://www.repositorio.ufc.br/handle/riufc/59231 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/59231/1/2021_dis_rcrodrigues.pdf http://repositorio.ufc.br/bitstream/riufc/59231/2/license.txt |
| bitstream.checksum.fl_str_mv |
60e17f642711c599cf02af10368acef7 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793083577532416 |