Theoretical proposals of graphene-based electronic devices

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Araújo, Francisco Ronan Viana
Orientador(a): Pereira Junior, João Milton
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/60557
Resumo: Graphene has been extensively investigated after its isolation in 2004 by A. K. Geim and K. S. Novoselov. Due to its remarkable electronic and transport properties, it has become a promising candidate to replace silicon in the production of field-effect transistors (heart of the electronics industry). However, turning off the current via gate potentials in graphene-based electronic devices can be a challenge due to Klein tunneling. In recent years, there has been an expressive search for theoretical and experimental proposals capable of modulating the current, avoiding the limitation imposed by Klein tunneling. In this sense, three electronic devices based on graphene nanoribbons were investigated in this Thesis, namely: (i) graphene p-n junction that acts as a Veselago lens, (ii) three-terminal ballistic junction of graphene (graphene Y-junction), and (iii) graphene quantum ring in the presence of a perpendicular magnetic field. Numerical simulations of quantum transport using a tight-binding model were performed in (i) and (ii). In (i), it was demonstrated that the application of an in-plane electric field or a perpendicular magnetic field changes the position of the output focus of the Veselago lens, reducing the conductance between the input and output terminals. In (ii), it was found that a gate potential applied to one of the graphene Y-junction terminals can properly modulate the current between the input terminal and the two output terminals. Finally, in (iii), a numerical approximation using the tight-binding model was compared to an analytical approach using the continuum model in order to show that the persistent current can be tuned through a gate potential applied to one of the graphene quantum ring arms. The electronic devices presented in this Thesis can benefit from the high mobility of charge carriers in graphene and represent viable theoretical proposals for the development of low-power field-effect transistors.
id UFC-7_622e1b96b364a130d37af1abddd58ff4
oai_identifier_str oai:repositorio.ufc.br:riufc/60557
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Araújo, Francisco Ronan VianaCosta, Diego Rabelo daPereira Junior, João Milton2021-09-21T13:54:49Z2021-09-21T13:54:49Z2021Araújo, F. R. V. Theoretical proposals of graphene-based electronic devices. 2021. 127 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/60557Graphene has been extensively investigated after its isolation in 2004 by A. K. Geim and K. S. Novoselov. Due to its remarkable electronic and transport properties, it has become a promising candidate to replace silicon in the production of field-effect transistors (heart of the electronics industry). However, turning off the current via gate potentials in graphene-based electronic devices can be a challenge due to Klein tunneling. In recent years, there has been an expressive search for theoretical and experimental proposals capable of modulating the current, avoiding the limitation imposed by Klein tunneling. In this sense, three electronic devices based on graphene nanoribbons were investigated in this Thesis, namely: (i) graphene p-n junction that acts as a Veselago lens, (ii) three-terminal ballistic junction of graphene (graphene Y-junction), and (iii) graphene quantum ring in the presence of a perpendicular magnetic field. Numerical simulations of quantum transport using a tight-binding model were performed in (i) and (ii). In (i), it was demonstrated that the application of an in-plane electric field or a perpendicular magnetic field changes the position of the output focus of the Veselago lens, reducing the conductance between the input and output terminals. In (ii), it was found that a gate potential applied to one of the graphene Y-junction terminals can properly modulate the current between the input terminal and the two output terminals. Finally, in (iii), a numerical approximation using the tight-binding model was compared to an analytical approach using the continuum model in order to show that the persistent current can be tuned through a gate potential applied to one of the graphene quantum ring arms. The electronic devices presented in this Thesis can benefit from the high mobility of charge carriers in graphene and represent viable theoretical proposals for the development of low-power field-effect transistors.O grafeno tem sido extensivamente investigado após seu isolamento em 2004 por A. K. Geim e K. S. Novoselov. Devido às suas notáveis propriedades eletrônicas e de transporte, tornou-se um candidato promissor para substituir o silício na produção de transistores de efeito de campo (coração da indústria eletrônica). No entanto, desligar a corrente via potenciais de porta em dispositivos eletrônicos baseados em grafeno pode ser um desafio devido ao tunelamento de Klein. Nos últimos anos, tem havido uma busca expressiva por propostas teóricas e experimentais capazes de modular a corrente, evitando a limitação imposta pelo tunelamento de Klein. Nesse sentido, três dispositivos eletrônicos baseados em nanofitas de grafeno foram investigados nesta Tese, a saber: (i) junção p-n de grafeno que atua como uma lente de Veselago, (ii) junção balística de três terminais de grafeno (junção Y de grafeno), e (iii) anel quântico de grafeno na presença de um campo magnético perpendicular. Simulações numéricas de transporte quântico usando um modelo tight-binding foram realizadas em (i) e (ii). Em (i), foi demonstrado que a aplicação de um campo elétrico no plano ou de um campo magnético perpendicular altera a posição do foco de saída da lente de Veselago, reduzindo a condutância entre os terminais de entrada e de saída. Em (ii), foi encontrado que um potencial de porta aplicado a um dos terminais da junção Y de grafeno pode modular adequadamente a corrente entre o terminal de entrada e os dois terminais de saída. Por fim, em (iii), uma aproximação numérica usando o modelo tight-binding foi comparada a uma abordagem analítica usando o modelo contínuo, a fim de mostrar que a corrente persistente pode ser sintonizada através de um potencial de porta aplicado a um dos braços do anel quântico de grafeno. Os dispositivos eletrônicos apresentados nesta Tese podem se beneficiar da alta mobilidade dos portadores de carga no grafeno e representam propostas teóricas viáveis para o desenvolvimento de transistores de efeito de campo de baixa potência.GrafenoDispositivo eletrônicoJunção p-nJunção YAnel quânticoTheoretical proposals of graphene-based electronic devicesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_tese_frvaraujo.pdf2021_tese_frvaraujo.pdfapplication/pdf17161963http://repositorio.ufc.br/bitstream/riufc/60557/7/2021_tese_frvaraujo.pdfff740e0a3d0857dc1f78636048e444d6MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/60557/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58riufc/605572021-09-21 10:54:49.62oai:repositorio.ufc.br:riufc/60557Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-09-21T13:54:49Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Theoretical proposals of graphene-based electronic devices
title Theoretical proposals of graphene-based electronic devices
spellingShingle Theoretical proposals of graphene-based electronic devices
Araújo, Francisco Ronan Viana
Grafeno
Dispositivo eletrônico
Junção p-n
Junção Y
Anel quântico
title_short Theoretical proposals of graphene-based electronic devices
title_full Theoretical proposals of graphene-based electronic devices
title_fullStr Theoretical proposals of graphene-based electronic devices
title_full_unstemmed Theoretical proposals of graphene-based electronic devices
title_sort Theoretical proposals of graphene-based electronic devices
author Araújo, Francisco Ronan Viana
author_facet Araújo, Francisco Ronan Viana
author_role author
dc.contributor.co-advisor.none.fl_str_mv Costa, Diego Rabelo da
dc.contributor.author.fl_str_mv Araújo, Francisco Ronan Viana
dc.contributor.advisor1.fl_str_mv Pereira Junior, João Milton
contributor_str_mv Pereira Junior, João Milton
dc.subject.por.fl_str_mv Grafeno
Dispositivo eletrônico
Junção p-n
Junção Y
Anel quântico
topic Grafeno
Dispositivo eletrônico
Junção p-n
Junção Y
Anel quântico
description Graphene has been extensively investigated after its isolation in 2004 by A. K. Geim and K. S. Novoselov. Due to its remarkable electronic and transport properties, it has become a promising candidate to replace silicon in the production of field-effect transistors (heart of the electronics industry). However, turning off the current via gate potentials in graphene-based electronic devices can be a challenge due to Klein tunneling. In recent years, there has been an expressive search for theoretical and experimental proposals capable of modulating the current, avoiding the limitation imposed by Klein tunneling. In this sense, three electronic devices based on graphene nanoribbons were investigated in this Thesis, namely: (i) graphene p-n junction that acts as a Veselago lens, (ii) three-terminal ballistic junction of graphene (graphene Y-junction), and (iii) graphene quantum ring in the presence of a perpendicular magnetic field. Numerical simulations of quantum transport using a tight-binding model were performed in (i) and (ii). In (i), it was demonstrated that the application of an in-plane electric field or a perpendicular magnetic field changes the position of the output focus of the Veselago lens, reducing the conductance between the input and output terminals. In (ii), it was found that a gate potential applied to one of the graphene Y-junction terminals can properly modulate the current between the input terminal and the two output terminals. Finally, in (iii), a numerical approximation using the tight-binding model was compared to an analytical approach using the continuum model in order to show that the persistent current can be tuned through a gate potential applied to one of the graphene quantum ring arms. The electronic devices presented in this Thesis can benefit from the high mobility of charge carriers in graphene and represent viable theoretical proposals for the development of low-power field-effect transistors.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-09-21T13:54:49Z
dc.date.available.fl_str_mv 2021-09-21T13:54:49Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Araújo, F. R. V. Theoretical proposals of graphene-based electronic devices. 2021. 127 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/60557
identifier_str_mv Araújo, F. R. V. Theoretical proposals of graphene-based electronic devices. 2021. 127 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/60557
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/60557/7/2021_tese_frvaraujo.pdf
http://repositorio.ufc.br/bitstream/riufc/60557/8/license.txt
bitstream.checksum.fl_str_mv ff740e0a3d0857dc1f78636048e444d6
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793102270496768