Sequential approximate optimization of composite structures

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Maia, Marina Alves
Orientador(a): Parente Junior, Evandro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/54994
Resumo: The design of composite structures is of relevance in many fields of engineering (civil, naval, aerospace, automobile, etc.) and as such has become an active research field. To fully explore the benefits of using composite materials, optimization techniques are often needed. However, the computational cost of the structural analyses may become a hindrance for the optimization process. This is especially critical when dealing with bio-inspired algorithms, where a high number of trial designs are typically employed. Thus, surrogate models are a valuable alternative to help reduce computational cost and enable the optimization of complex structures. In this work, two surrogate models were studied: Radial Basis Function (RBF) and Kriging. Both surrogate models were used in association with an optimization technique known as Sequential Approximate Optimization (SAO), in which the approximate response surface is continuously updated and improved by the addition of new points in the design space. For that matter, two infill criteria were assessed: the Expected Improvement (EI) and the Weight Expected Improvement (WEI). Both use the Particle Swarm Optimization to maximize their acquisition functions. To evaluate the structural response of the composite structures, the Isogeometric Analysis (IGA) was employed. A comparison between the SAO algorithms was carried out in terms of accuracy, efficiency, and robustness. The implementation was validated using a set of numerical examples from the literature. The examples include different types of structures using functionally graded and laminated composite materials. Results show the efficiency of the proposed algorithms and highlight the impact of the choice of the Infill Criterion on their performance. An expressive reduction in the number of High-Fidelity (HF) evaluations was obtained compared to traditional optimization, saving a significant amount of processing time. This is particularly promising when the structural analysis involves refined meshes or the consideration of nonlinear behaviour. In general, the RBF consistently provided the fastest surrogate model building and updating processes, while Kriging provided more accurate results with fewer HF evaluations in a wide range of applications.
id UFC-7_633f68fd00d9c290da20dc6842ab99ec
oai_identifier_str oai:repositorio.ufc.br:riufc/54994
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Maia, Marina AlvesMelo, Antônio Macário Cartaxo deParente Junior, Evandro2020-11-04T13:03:32Z2020-11-04T13:03:32Z2020MAIA, Marina Alves. Sequential approximate optimization of composite structures. 2020. 121 f. Dissertação (Mestrado em Engenharia Civil: Estruturas e Construção Civil) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-graduação em Engenharia Civil: Estruturas e Construção Civil, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/54994The design of composite structures is of relevance in many fields of engineering (civil, naval, aerospace, automobile, etc.) and as such has become an active research field. To fully explore the benefits of using composite materials, optimization techniques are often needed. However, the computational cost of the structural analyses may become a hindrance for the optimization process. This is especially critical when dealing with bio-inspired algorithms, where a high number of trial designs are typically employed. Thus, surrogate models are a valuable alternative to help reduce computational cost and enable the optimization of complex structures. In this work, two surrogate models were studied: Radial Basis Function (RBF) and Kriging. Both surrogate models were used in association with an optimization technique known as Sequential Approximate Optimization (SAO), in which the approximate response surface is continuously updated and improved by the addition of new points in the design space. For that matter, two infill criteria were assessed: the Expected Improvement (EI) and the Weight Expected Improvement (WEI). Both use the Particle Swarm Optimization to maximize their acquisition functions. To evaluate the structural response of the composite structures, the Isogeometric Analysis (IGA) was employed. A comparison between the SAO algorithms was carried out in terms of accuracy, efficiency, and robustness. The implementation was validated using a set of numerical examples from the literature. The examples include different types of structures using functionally graded and laminated composite materials. Results show the efficiency of the proposed algorithms and highlight the impact of the choice of the Infill Criterion on their performance. An expressive reduction in the number of High-Fidelity (HF) evaluations was obtained compared to traditional optimization, saving a significant amount of processing time. This is particularly promising when the structural analysis involves refined meshes or the consideration of nonlinear behaviour. In general, the RBF consistently provided the fastest surrogate model building and updating processes, while Kriging provided more accurate results with fewer HF evaluations in a wide range of applications.O projeto de estruturas de material compósito é de relevância em muitos campos da engenharia (civil, naval, aeroespacial, automobilística, etc.) e, como tal, tornou-se um tópico de pesquisa bastante ativo. De modo a potencializar os benefícios oriundos desse tipo de material, é necessário a utilização de técnicas de otimização. Contudo, o custo computacional das análises estruturais pode se apresentar como uma limitação para o processo de otimização. Este problema é particularmente crítico quando algoritmos bioinspirados são utilizados devido ao grande número de avaliações do modelo de alta fidelidade usualmente empregado. Dessa forma, os modelos substitutos (surrogate models) apresentam-se como uma alternativa valiosa para ajudar a reduzir o custo computacional e permitir a otimização de estruturas complexas. Neste trabalho, dois modelos substitutos são estudados: Funções de Base Radiais (Radial Basis Function - RBF) e Kriging. Estes foram incorporados a uma metodologia de otimização conhecida como Otimização Aproximada Sequencial (Sequential Approximate Optimization - SAO), onde a superfície de resposta aproximada é continuamente atualizada e melhorada pela inserção de novos pontos. Para isto, dois Critérios de Preenchimento foram avaliados: Melhoria Esperada e Melhoria Esperada Ponderada. Ambos utilizam o algoritmo de Otimização por Enxame de Partículas para maximizar suas funções de aquisição. Para obtenção das respostas estruturais do HFM, foi utilizada a Análise Isogeométrica. Uma comparação entre as diferentes metodologias é realizada em termos de precisão, eficiência e robustez. A verificação da implementação dos algoritmos SAO foi realizada com base em exemplos da literatura. Estes contemplam diferentes tipos de estruturas utilizando materiais com gradação funcional e estruturas de compósito laminado. Os resultados atestam a eficiência dos algoritmos propostos e evidenciam o impacto da escolha do Critério de Preenchimento no desempenho desses algoritmos. Uma expressiva redução no número de avaliações de alta fidelidade quando comparado à otimização tradicional foi obtida, o que resulta em uma significativa redução no esforço computacional. Isto é particularmente promissor quando a análise estrutural envolve malhas refinados ou a consideração do comportamento não-linear. Em geral, o RBF apresentou um processo mais rápido, tanto na construção quanto na atualização do modelo, enquanto o Kriging se destaca pela sua precisão com um menor número de avaliações de alta fidelidade em uma grande variedade de aplicações.Materiais compósitosModelo substitutoOtimização sequencial aproximadaSequential approximate optimization of composite structuresSequential approximate optimization of composite structuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2020_dis_mamaia.pdf2020_dis_mamaia.pdfapplication/pdf9584997http://repositorio.ufc.br/bitstream/riufc/54994/1/2020_dis_mamaia.pdfe0b1aad4bbb583b80ffd1d5fad9fa865MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/54994/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/549942022-06-07 09:14:31.68oai:repositorio.ufc.br:riufc/54994Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-06-07T12:14:31Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Sequential approximate optimization of composite structures
dc.title.en.pt_BR.fl_str_mv Sequential approximate optimization of composite structures
title Sequential approximate optimization of composite structures
spellingShingle Sequential approximate optimization of composite structures
Maia, Marina Alves
Materiais compósitos
Modelo substituto
Otimização sequencial aproximada
title_short Sequential approximate optimization of composite structures
title_full Sequential approximate optimization of composite structures
title_fullStr Sequential approximate optimization of composite structures
title_full_unstemmed Sequential approximate optimization of composite structures
title_sort Sequential approximate optimization of composite structures
author Maia, Marina Alves
author_facet Maia, Marina Alves
author_role author
dc.contributor.co-advisor.none.fl_str_mv Melo, Antônio Macário Cartaxo de
dc.contributor.author.fl_str_mv Maia, Marina Alves
dc.contributor.advisor1.fl_str_mv Parente Junior, Evandro
contributor_str_mv Parente Junior, Evandro
dc.subject.por.fl_str_mv Materiais compósitos
Modelo substituto
Otimização sequencial aproximada
topic Materiais compósitos
Modelo substituto
Otimização sequencial aproximada
description The design of composite structures is of relevance in many fields of engineering (civil, naval, aerospace, automobile, etc.) and as such has become an active research field. To fully explore the benefits of using composite materials, optimization techniques are often needed. However, the computational cost of the structural analyses may become a hindrance for the optimization process. This is especially critical when dealing with bio-inspired algorithms, where a high number of trial designs are typically employed. Thus, surrogate models are a valuable alternative to help reduce computational cost and enable the optimization of complex structures. In this work, two surrogate models were studied: Radial Basis Function (RBF) and Kriging. Both surrogate models were used in association with an optimization technique known as Sequential Approximate Optimization (SAO), in which the approximate response surface is continuously updated and improved by the addition of new points in the design space. For that matter, two infill criteria were assessed: the Expected Improvement (EI) and the Weight Expected Improvement (WEI). Both use the Particle Swarm Optimization to maximize their acquisition functions. To evaluate the structural response of the composite structures, the Isogeometric Analysis (IGA) was employed. A comparison between the SAO algorithms was carried out in terms of accuracy, efficiency, and robustness. The implementation was validated using a set of numerical examples from the literature. The examples include different types of structures using functionally graded and laminated composite materials. Results show the efficiency of the proposed algorithms and highlight the impact of the choice of the Infill Criterion on their performance. An expressive reduction in the number of High-Fidelity (HF) evaluations was obtained compared to traditional optimization, saving a significant amount of processing time. This is particularly promising when the structural analysis involves refined meshes or the consideration of nonlinear behaviour. In general, the RBF consistently provided the fastest surrogate model building and updating processes, while Kriging provided more accurate results with fewer HF evaluations in a wide range of applications.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-11-04T13:03:32Z
dc.date.available.fl_str_mv 2020-11-04T13:03:32Z
dc.date.issued.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MAIA, Marina Alves. Sequential approximate optimization of composite structures. 2020. 121 f. Dissertação (Mestrado em Engenharia Civil: Estruturas e Construção Civil) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-graduação em Engenharia Civil: Estruturas e Construção Civil, Fortaleza, 2020.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/54994
identifier_str_mv MAIA, Marina Alves. Sequential approximate optimization of composite structures. 2020. 121 f. Dissertação (Mestrado em Engenharia Civil: Estruturas e Construção Civil) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-graduação em Engenharia Civil: Estruturas e Construção Civil, Fortaleza, 2020.
url http://www.repositorio.ufc.br/handle/riufc/54994
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/54994/1/2020_dis_mamaia.pdf
http://repositorio.ufc.br/bitstream/riufc/54994/2/license.txt
bitstream.checksum.fl_str_mv e0b1aad4bbb583b80ffd1d5fad9fa865
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793391999385600