Tensor-based MIMO relaying communication systems

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Ximenes, Leandro Ronchini
Orientador(a): Almeida, André Lima Férrer de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/12931
Resumo: In cooperative communication systems, two or more transmitting terminals are combined to increase the diversity and/or the power of the signals arriving at a particular receiver. Therefore, even if the devices do not have more than one antenna, or if a significant propaga- tion loss is present between the two communicating nodes, the various transmitting elements can act as a virtual antenna array, thus obtaining the benefits of the multiple antenna (MIMO) systems, especially the increase in the capacity. Recently, tensor decompositions have been introduced as an efficient approach for channel estimation in cooperative com- munication systems. However, among the few works devoted to this task, the utilization of the PARAFAC tensor decomposition for modeling the received signals did not allow the development of techniques for joint symbol and channel estimation. Aiming to avoid the use of pilot sequences, which limits the overall spectral efficiency by dedicating a portion of the bandwidth only for the channel estimation task, the objective of this thesis is to provide new tensor-based strategies, including transmission systems and semi-blind receivers, for one-way two-hop MIMO relaying systems. Based on a Khatri-Rao space-time coding at the source and two different Amplify-and-Forward (AF) relaying strategies, two transmission schemes are proposed. For these systems, named PT2-AF and NP-AF, the received signals at the destination node follow respectively a PARATUCK2 and a nested PARAFAC tensor model. Exploiting uniqueness properties of these tensor models which are established in the thesis, several semi-blind receivers are derived. Some of these receivers are of iterative form us- ing an ALS algorithm, whereas some other ones have closed-form solutions associated with Khatri-Rao factorizations. Some simulation results are finally presented to illustrate the per- formance of the proposed receivers which are compared to some state-of-the-art supervised techniques
id UFC-7_635a182ae280edada5b5f08615fb1230
oai_identifier_str oai:repositorio.ufc.br:riufc/12931
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Ximenes, Leandro RonchiniFavier, GérardAlmeida, André Lima Férrer de2015-06-24T17:52:38Z2015-06-24T17:52:38Z2015XIMENES, L. R. Tensor-based MIMO relaying communication systems. 2015. 134 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.http://www.repositorio.ufc.br/handle/riufc/12931In cooperative communication systems, two or more transmitting terminals are combined to increase the diversity and/or the power of the signals arriving at a particular receiver. Therefore, even if the devices do not have more than one antenna, or if a significant propaga- tion loss is present between the two communicating nodes, the various transmitting elements can act as a virtual antenna array, thus obtaining the benefits of the multiple antenna (MIMO) systems, especially the increase in the capacity. Recently, tensor decompositions have been introduced as an efficient approach for channel estimation in cooperative com- munication systems. However, among the few works devoted to this task, the utilization of the PARAFAC tensor decomposition for modeling the received signals did not allow the development of techniques for joint symbol and channel estimation. Aiming to avoid the use of pilot sequences, which limits the overall spectral efficiency by dedicating a portion of the bandwidth only for the channel estimation task, the objective of this thesis is to provide new tensor-based strategies, including transmission systems and semi-blind receivers, for one-way two-hop MIMO relaying systems. Based on a Khatri-Rao space-time coding at the source and two different Amplify-and-Forward (AF) relaying strategies, two transmission schemes are proposed. For these systems, named PT2-AF and NP-AF, the received signals at the destination node follow respectively a PARATUCK2 and a nested PARAFAC tensor model. Exploiting uniqueness properties of these tensor models which are established in the thesis, several semi-blind receivers are derived. Some of these receivers are of iterative form us- ing an ALS algorithm, whereas some other ones have closed-form solutions associated with Khatri-Rao factorizations. Some simulation results are finally presented to illustrate the per- formance of the proposed receivers which are compared to some state-of-the-art supervised techniquesEm comunicações cooperativas, dois ou mais terminais de transmissão são combinados para aumentar a diversidade e/ou a potencia dos sinais que chegam a um determinado receptor. Portanto, mesmo que os dispositivos não disponham de mais de uma antena, ou que então haja uma grande perda por propagação entre dois pontos comunicantes, os diversos elementos transmissores podem atuar como um arranjo virtual de antenas, obtendo-se assim vantagens dos sistemas de múltiplas antenas (MIMO), sobretudo o aumento da capacidade de transmissão. Recentemente, a chamada analise tensorial tem se mostrado uma abordagem eficiente então para a estimação de canais em sistemas com diversidade cooperativa. Contudo, nos poucos trabalhos dedicados a essa tarefa, a utilização da decomposição tensorial PARAFAC para a modelagem dos sinais recebidos não possibilitou o desenvolvimento de técnicas de estimação conjunta de canais e símbolos. Com a idéia de se evitar o uso de sequencias de treinamento, que limita a eficiência espectral da transmissão por dedicar uma parte da largura de banda apenas para a tarefa de estimação dos canais, o objetivo desta tese é prover novas estratégias de comunicação, em termos de sistemas de transmissão e receptores semi-cegos, baseados em tensores adaptados a sistemas cooperativos MIMO unidirecionais de dois saltos. Dois sistemas de transmissão são propostos utilizando uma codificação espaço-temporal do tipo Khatri-Rao na fonte e duas estrategias de processamento Amplify-and-Forward (AF) no relay. Para estes sistemas, nomeados PT2-AF e NP-AF, os sinais recebidos no chamado nó de destino satisfazem os modelos tensoriais do tipo PARATUCK2 e Nested PARAFAC. Explorando as propriedades de unicidade destes modelos tensoriais estabelecidas nesta tese, vários receptores semi-cegos são derivados. Alguns destes receptores são do tipo ALS, enquanto outros são de soluções baseadas na factorização de produtos de Khatri-Rao. Resultados de simulação são apresentados para ilustrar os desempenhos dos receptores propostos em comparação a alguns estimadores supervisionadosTeleinformáticaTensor(Cálculo)Sistemas cooperativosEstimação de canalTensor-based MIMO relaying communication systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/12931/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52ORIGINAL2015_tese_lrximenes.pdf2015_tese_lrximenes.pdfapplication/pdf22186309http://repositorio.ufc.br/bitstream/riufc/12931/1/2015_tese_lrximenes.pdfb90a5d56afa23e69c67413686ac097d4MD51riufc/129312023-03-30 09:50:56.257oai:repositorio.ufc.br:riufc/12931w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-03-30T12:50:56Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Tensor-based MIMO relaying communication systems
title Tensor-based MIMO relaying communication systems
spellingShingle Tensor-based MIMO relaying communication systems
Ximenes, Leandro Ronchini
Teleinformática
Tensor(Cálculo)
Sistemas cooperativos
Estimação de canal
title_short Tensor-based MIMO relaying communication systems
title_full Tensor-based MIMO relaying communication systems
title_fullStr Tensor-based MIMO relaying communication systems
title_full_unstemmed Tensor-based MIMO relaying communication systems
title_sort Tensor-based MIMO relaying communication systems
author Ximenes, Leandro Ronchini
author_facet Ximenes, Leandro Ronchini
author_role author
dc.contributor.co-advisor.none.fl_str_mv Favier, Gérard
dc.contributor.author.fl_str_mv Ximenes, Leandro Ronchini
dc.contributor.advisor1.fl_str_mv Almeida, André Lima Férrer de
contributor_str_mv Almeida, André Lima Férrer de
dc.subject.por.fl_str_mv Teleinformática
Tensor(Cálculo)
Sistemas cooperativos
Estimação de canal
topic Teleinformática
Tensor(Cálculo)
Sistemas cooperativos
Estimação de canal
description In cooperative communication systems, two or more transmitting terminals are combined to increase the diversity and/or the power of the signals arriving at a particular receiver. Therefore, even if the devices do not have more than one antenna, or if a significant propaga- tion loss is present between the two communicating nodes, the various transmitting elements can act as a virtual antenna array, thus obtaining the benefits of the multiple antenna (MIMO) systems, especially the increase in the capacity. Recently, tensor decompositions have been introduced as an efficient approach for channel estimation in cooperative com- munication systems. However, among the few works devoted to this task, the utilization of the PARAFAC tensor decomposition for modeling the received signals did not allow the development of techniques for joint symbol and channel estimation. Aiming to avoid the use of pilot sequences, which limits the overall spectral efficiency by dedicating a portion of the bandwidth only for the channel estimation task, the objective of this thesis is to provide new tensor-based strategies, including transmission systems and semi-blind receivers, for one-way two-hop MIMO relaying systems. Based on a Khatri-Rao space-time coding at the source and two different Amplify-and-Forward (AF) relaying strategies, two transmission schemes are proposed. For these systems, named PT2-AF and NP-AF, the received signals at the destination node follow respectively a PARATUCK2 and a nested PARAFAC tensor model. Exploiting uniqueness properties of these tensor models which are established in the thesis, several semi-blind receivers are derived. Some of these receivers are of iterative form us- ing an ALS algorithm, whereas some other ones have closed-form solutions associated with Khatri-Rao factorizations. Some simulation results are finally presented to illustrate the per- formance of the proposed receivers which are compared to some state-of-the-art supervised techniques
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-06-24T17:52:38Z
dc.date.available.fl_str_mv 2015-06-24T17:52:38Z
dc.date.issued.fl_str_mv 2015
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv XIMENES, L. R. Tensor-based MIMO relaying communication systems. 2015. 134 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/12931
identifier_str_mv XIMENES, L. R. Tensor-based MIMO relaying communication systems. 2015. 134 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.
url http://www.repositorio.ufc.br/handle/riufc/12931
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/12931/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/12931/1/2015_tese_lrximenes.pdf
bitstream.checksum.fl_str_mv 8c4401d3d14722a7ca2d07c782a1aab3
b90a5d56afa23e69c67413686ac097d4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793325811171328