Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Pericini, Matheus Henrique Machado
Orientador(a): Machado, Javam de Castro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/27010
Resumo: With the increase in the number of data obtained by large companies, it was necessary to elaborate new strategies for the processing of this data in order to maintain the relevance of the information that they contain. One of the strategies that has been widely used is based on a programming model, called MapReduce, which uses division and conquest to process the data in a cluster of machines. Hadoop is one of the most consolidated implementations of the MapReduce model. But even such a strategy is subject to improvement. In it, the runtime depends on all the machines causing any overloaded machine to generate a delay in the delivery of the result. This overhead is caused by a problem commonly called Data Skew which consists of an unequal division of data, either by the size of the data or by the way it is divided. In order to solve this problem, we have proposed the MALiBU, an improvement of the execution strategy of Hadoop, which partitions the data between the machines using a meta-heuristic among them Simulated Annealing, Local Beam Search or Stochastic Beam Search. Experimental results showed improvements in the performance of Hadoop when using metaheuristics to distribute the data among the processing elements of the model, as well as among the three meta-heuristics evaluated, which has the best results.
id UFC-7_68a55ba01689dab9557901d9d7883ec9
oai_identifier_str oai:repositorio.ufc.br:riufc/27010
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Pericini, Matheus Henrique MachadoMachado, Javam de Castro2017-10-30T17:13:30Z2017-10-30T17:13:30Z2017PERICINI, Matheus Henrique Machado. Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce. 2017. 71 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/27010With the increase in the number of data obtained by large companies, it was necessary to elaborate new strategies for the processing of this data in order to maintain the relevance of the information that they contain. One of the strategies that has been widely used is based on a programming model, called MapReduce, which uses division and conquest to process the data in a cluster of machines. Hadoop is one of the most consolidated implementations of the MapReduce model. But even such a strategy is subject to improvement. In it, the runtime depends on all the machines causing any overloaded machine to generate a delay in the delivery of the result. This overhead is caused by a problem commonly called Data Skew which consists of an unequal division of data, either by the size of the data or by the way it is divided. In order to solve this problem, we have proposed the MALiBU, an improvement of the execution strategy of Hadoop, which partitions the data between the machines using a meta-heuristic among them Simulated Annealing, Local Beam Search or Stochastic Beam Search. Experimental results showed improvements in the performance of Hadoop when using metaheuristics to distribute the data among the processing elements of the model, as well as among the three meta-heuristics evaluated, which has the best results.Com o aumento do número de dados obtidos por grandes empresas, foi necessário elaborar novas estratégias para o processamento desses dados de modo a manter sua relevância e aproveitar suas informações. Uma das estratégias que tem sido amplamente utilizada tem como base um modelo de programação, chamado MapReduce, que utiliza divisão e conquista para processar os dados em um cluster de máquinas. O Hadoop é uma das implementações mais consolidadas do modelo de MapReduce. Mas mesmo tal estratégia é passível de melhorias. Nela o tempo de execução é dependente de todas as máquinas fazendo com que qualquer máquina sobrecarregada gere um atraso na entrega do resultado. Essa sobrecarga é causada por um problema chamado comumente de Data Skew que consiste em uma divisão desigual dos dados causado pelo tamanho dos dados, o modo como eles são divididos, ou o processamento desigual dos dados. Visando resolver esse problema, propusemos o MALiBU, uma melhoria da estratégia de execução do MapReduce que particiona os dados entre as máquinas usando uma meta-heurística dentre elas Simulated Annealing, Local Beam Search ou Stochastic Beam Search. Resultados experimentais mostraram melhorias no desempenho do MapReduce quando se faz uso de meta-heurística para distribuir os dados entre as máquinas, bem como mostraram, dentre as três meta-heurísticas avaliadas, qual delas melhor balanceia a carga.MapReduceMeta-heurísticasSkewOtimizaçãoUtilização de metaheurísticas para balanceamento de carga em ambientes MapReduceMetaheuristics approach for online load balancing in MapReduceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2017_dis_mhmpericini.pdf2017_dis_mhmpericini.pdfapplication/pdf2357761http://repositorio.ufc.br/bitstream/riufc/27010/3/2017_dis_mhmpericini.pdf48515c2e24a22defc8d6761063baa534MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/27010/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/270102020-07-09 12:31:02.287oai:repositorio.ufc.br:riufc/27010Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-07-09T15:31:02Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
dc.title.en.pt_BR.fl_str_mv Metaheuristics approach for online load balancing in MapReduce
title Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
spellingShingle Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
Pericini, Matheus Henrique Machado
MapReduce
Meta-heurísticas
Skew
Otimização
title_short Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
title_full Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
title_fullStr Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
title_full_unstemmed Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
title_sort Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce
author Pericini, Matheus Henrique Machado
author_facet Pericini, Matheus Henrique Machado
author_role author
dc.contributor.author.fl_str_mv Pericini, Matheus Henrique Machado
dc.contributor.advisor1.fl_str_mv Machado, Javam de Castro
contributor_str_mv Machado, Javam de Castro
dc.subject.por.fl_str_mv MapReduce
Meta-heurísticas
Skew
Otimização
topic MapReduce
Meta-heurísticas
Skew
Otimização
description With the increase in the number of data obtained by large companies, it was necessary to elaborate new strategies for the processing of this data in order to maintain the relevance of the information that they contain. One of the strategies that has been widely used is based on a programming model, called MapReduce, which uses division and conquest to process the data in a cluster of machines. Hadoop is one of the most consolidated implementations of the MapReduce model. But even such a strategy is subject to improvement. In it, the runtime depends on all the machines causing any overloaded machine to generate a delay in the delivery of the result. This overhead is caused by a problem commonly called Data Skew which consists of an unequal division of data, either by the size of the data or by the way it is divided. In order to solve this problem, we have proposed the MALiBU, an improvement of the execution strategy of Hadoop, which partitions the data between the machines using a meta-heuristic among them Simulated Annealing, Local Beam Search or Stochastic Beam Search. Experimental results showed improvements in the performance of Hadoop when using metaheuristics to distribute the data among the processing elements of the model, as well as among the three meta-heuristics evaluated, which has the best results.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-10-30T17:13:30Z
dc.date.available.fl_str_mv 2017-10-30T17:13:30Z
dc.date.issued.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PERICINI, Matheus Henrique Machado. Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce. 2017. 71 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/27010
identifier_str_mv PERICINI, Matheus Henrique Machado. Utilização de metaheurísticas para balanceamento de carga em ambientes MapReduce. 2017. 71 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017.
url http://www.repositorio.ufc.br/handle/riufc/27010
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/27010/3/2017_dis_mhmpericini.pdf
http://repositorio.ufc.br/bitstream/riufc/27010/2/license.txt
bitstream.checksum.fl_str_mv 48515c2e24a22defc8d6761063baa534
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793268972060672