Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/75618 |
Resumo: | The dynamic and stochastic vehicle allocation problem involves deciding which vehicles to assign to requests that arise randomly in time and space. This challenge includes various practical scenarios, such as the transportation of goods by trucks, emergency response systems, and app- based transportation services. In this study, the problem was modeled as a semi-Markov decision process, allowing the treatment of time as a continuous variable. In this approach, decision moments coincide with discrete events with random durations. The use of this event-based strategy results in a significant reduction in decision space, thereby reducing the complexity of the allocation problems involved. Furthermore, it proves to be more suitable for practical situations when compared to discrete-time models often used in the literature. To validate the proposed approach, a discrete event simulator was developed, and two decision-making agents were trained using the reinforcement learning algorithm called Double Deep Q-Learning. Numerical experiments were conducted in realistic scenarios in New York, and the results of the proposed approach were compared with commonly employed heuristics, demonstrating substantial improvements, including up to a 50% reduction in average waiting times compared to other tested policies. |
| id |
UFC-7_6b2dc57b68d1b95f9bb6670540e317f0 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/75618 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Cordeiro, Francisco Edyvalberty AlenquerPitombeira Neto, Anselmo Ramalho2024-01-05T13:25:12Z2024-01-05T13:25:12Z2023-12-20CORDEIRO, Francisco Edyvalberty Alenquer. Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico. 2023. 106 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023.http://repositorio.ufc.br/handle/riufc/75618The dynamic and stochastic vehicle allocation problem involves deciding which vehicles to assign to requests that arise randomly in time and space. This challenge includes various practical scenarios, such as the transportation of goods by trucks, emergency response systems, and app- based transportation services. In this study, the problem was modeled as a semi-Markov decision process, allowing the treatment of time as a continuous variable. In this approach, decision moments coincide with discrete events with random durations. The use of this event-based strategy results in a significant reduction in decision space, thereby reducing the complexity of the allocation problems involved. Furthermore, it proves to be more suitable for practical situations when compared to discrete-time models often used in the literature. To validate the proposed approach, a discrete event simulator was developed, and two decision-making agents were trained using the reinforcement learning algorithm called Double Deep Q-Learning. Numerical experiments were conducted in realistic scenarios in New York, and the results of the proposed approach were compared with commonly employed heuristics, demonstrating substantial improvements, including up to a 50% reduction in average waiting times compared to other tested policies.O problema de alocação de veículos dinâmico e estocástico consiste em decidir quais veículos atribuir a solicitações que surgem de maneira aleatória no tempo e no espaço. Este desafio abrange diversas situações práticas, como o transporte de cargas por caminhões, sistemas de atendimento de emergência e serviços de transporte por aplicativo. Neste estudo, o problema foi modelado como um processo de decisão semimarkoviano, permitindo tratar o tempo como uma variável contínua. Nessa abordagem, os momentos de decisão coincidem com eventos discretos, cujas durações são aleatórias. A aplicação dessa estratégia baseada em eventos resulta em uma significativa redução do espaço de decisões, diminuindo a complexidade dos problemas de alocação envolvidos. Além disso, mostra-se mais adequada para situações práticas quando comparada com os modelos de tempo discreto frequentemente utilizados na literatura. Para validar a abordagem proposta, foi desenvolvido um simulador de eventos discretos e realizado o treinamento de dois agentes tomadores de decisão utilizando o algoritmo de aprendizado por reforço chamado Double Deep Q-Learning. Os experimentos numéricos foram conduzidos em cenários realistas de Nova York, e os resultados da abordagem proposta foram comparados com heurísticas comumente empregadas na prática, evidenciando melhorias substanciais, incluindo a redução de até 50% nos tempos médios de espera em comparação com as demais políticas testadas.Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocásticoDeep reinforcement learning applied to the dynamic and stochastic vehicle allocation probleminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOtimização matemáticaSimulação de eventos discretosAprendizado por reforçoRedes neurais (Computação)Q-learningProcesso de decisão semimarkovianoMathematical optimizationDiscrete event simulationReinforcement learningNeural networks (Computer science)Q-learningSemi-Markov decision processCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/96778721883196440000-0001-9234-8917http://lattes.cnpq.br/56615874135647132023-12-21LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/75618/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINAL2023_dis_feacordeiro.pdf2023_dis_feacordeiro.pdfDissertação Edy Alenquerapplication/pdf14171534http://repositorio.ufc.br/bitstream/riufc/75618/6/2023_dis_feacordeiro.pdf8019f447245b704dc994080743bef11cMD56riufc/756182024-01-05 16:18:54.711oai:repositorio.ufc.br:riufc/75618Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-01-05T19:18:54Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico |
| dc.title.en.pt_BR.fl_str_mv |
Deep reinforcement learning applied to the dynamic and stochastic vehicle allocation problem |
| title |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico |
| spellingShingle |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico Cordeiro, Francisco Edyvalberty Alenquer CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA Otimização matemática Simulação de eventos discretos Aprendizado por reforço Redes neurais (Computação) Q-learning Processo de decisão semimarkoviano Mathematical optimization Discrete event simulation Reinforcement learning Neural networks (Computer science) Q-learning Semi-Markov decision process |
| title_short |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico |
| title_full |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico |
| title_fullStr |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico |
| title_full_unstemmed |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico |
| title_sort |
Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico |
| author |
Cordeiro, Francisco Edyvalberty Alenquer |
| author_facet |
Cordeiro, Francisco Edyvalberty Alenquer |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Cordeiro, Francisco Edyvalberty Alenquer |
| dc.contributor.advisor1.fl_str_mv |
Pitombeira Neto, Anselmo Ramalho |
| contributor_str_mv |
Pitombeira Neto, Anselmo Ramalho |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA Otimização matemática Simulação de eventos discretos Aprendizado por reforço Redes neurais (Computação) Q-learning Processo de decisão semimarkoviano Mathematical optimization Discrete event simulation Reinforcement learning Neural networks (Computer science) Q-learning Semi-Markov decision process |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Otimização matemática Simulação de eventos discretos Aprendizado por reforço Redes neurais (Computação) Q-learning Processo de decisão semimarkoviano |
| dc.subject.en.pt_BR.fl_str_mv |
Mathematical optimization Discrete event simulation Reinforcement learning Neural networks (Computer science) Q-learning Semi-Markov decision process |
| description |
The dynamic and stochastic vehicle allocation problem involves deciding which vehicles to assign to requests that arise randomly in time and space. This challenge includes various practical scenarios, such as the transportation of goods by trucks, emergency response systems, and app- based transportation services. In this study, the problem was modeled as a semi-Markov decision process, allowing the treatment of time as a continuous variable. In this approach, decision moments coincide with discrete events with random durations. The use of this event-based strategy results in a significant reduction in decision space, thereby reducing the complexity of the allocation problems involved. Furthermore, it proves to be more suitable for practical situations when compared to discrete-time models often used in the literature. To validate the proposed approach, a discrete event simulator was developed, and two decision-making agents were trained using the reinforcement learning algorithm called Double Deep Q-Learning. Numerical experiments were conducted in realistic scenarios in New York, and the results of the proposed approach were compared with commonly employed heuristics, demonstrating substantial improvements, including up to a 50% reduction in average waiting times compared to other tested policies. |
| publishDate |
2023 |
| dc.date.issued.fl_str_mv |
2023-12-20 |
| dc.date.accessioned.fl_str_mv |
2024-01-05T13:25:12Z |
| dc.date.available.fl_str_mv |
2024-01-05T13:25:12Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CORDEIRO, Francisco Edyvalberty Alenquer. Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico. 2023. 106 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/75618 |
| identifier_str_mv |
CORDEIRO, Francisco Edyvalberty Alenquer. Aprendizado por reforço profundo aplicado ao problema de alocação de veículos dinâmico e estocástico. 2023. 106 f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023. |
| url |
http://repositorio.ufc.br/handle/riufc/75618 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/75618/5/license.txt http://repositorio.ufc.br/bitstream/riufc/75618/6/2023_dis_feacordeiro.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8019f447245b704dc994080743bef11c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793158613630976 |