Exportação concluída — 

Recurrent gaussian processes and robust dynamical modeling

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Mattos, César Lincoln Cavalcante
Orientador(a): Barreto, Guilherme de Alencar
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/25604
Resumo: The study of dynamical systems is widespread across several areas of knowledge. Sequential data is generated constantly by different phenomena, most of them we cannot explain by equations derived from known physical laws and structures. In such context, this thesis aims to tackle the task of nonlinear system identification, which builds models directly from sequential measurements. More specifically, we approach challenging scenarios, such as learning temporal relations from noisy data, data containing discrepant values (outliers) and large datasets. In the interface between statistics, computer science, data analysis and engineering lies the machine learning community, which brings powerful tools to find patterns from data and make predictions. In that sense, we follow methods based on Gaussian Processes (GP), a principled, practical, probabilistic approach to learning in kernel machines. We aim to exploit recent advances in general GP modeling to bring new contributions to the dynamical modeling exercise. Thus, we propose the novel family of Recurrent Gaussian Processes (RGPs) models and extend their concept to handle outlier-robust requirements and scalable stochastic learning. The hierarchical latent (non-observed) structure of those models impose intractabilities in the form of non-analytical expressions, which are handled with the derivation of new variational algorithms to perform approximate deterministic inference as an optimization problem. The presented solutions enable uncertainty propagation on both training and testing, with focus on free simulation. We comprehensively evaluate the proposed methods with both artificial and real system identification benchmarks, as well as other related dynamical settings. The obtained results indicate that the proposed approaches are competitive when compared to the state of the art in the aforementioned complicated setups and that GP-based dynamical modeling is a promising area of research.
id UFC-7_6e7b1d0a3da569415ed6e20544de83c8
oai_identifier_str oai:repositorio.ufc.br:riufc/25604
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Mattos, César Lincoln CavalcanteBarreto, Guilherme de Alencar2017-09-12T16:29:18Z2017-09-12T16:29:18Z2017MATTOS, C. L. C. Recurrent gaussian processes and robust dynamical modeling. 2017. 189 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/25604The study of dynamical systems is widespread across several areas of knowledge. Sequential data is generated constantly by different phenomena, most of them we cannot explain by equations derived from known physical laws and structures. In such context, this thesis aims to tackle the task of nonlinear system identification, which builds models directly from sequential measurements. More specifically, we approach challenging scenarios, such as learning temporal relations from noisy data, data containing discrepant values (outliers) and large datasets. In the interface between statistics, computer science, data analysis and engineering lies the machine learning community, which brings powerful tools to find patterns from data and make predictions. In that sense, we follow methods based on Gaussian Processes (GP), a principled, practical, probabilistic approach to learning in kernel machines. We aim to exploit recent advances in general GP modeling to bring new contributions to the dynamical modeling exercise. Thus, we propose the novel family of Recurrent Gaussian Processes (RGPs) models and extend their concept to handle outlier-robust requirements and scalable stochastic learning. The hierarchical latent (non-observed) structure of those models impose intractabilities in the form of non-analytical expressions, which are handled with the derivation of new variational algorithms to perform approximate deterministic inference as an optimization problem. The presented solutions enable uncertainty propagation on both training and testing, with focus on free simulation. We comprehensively evaluate the proposed methods with both artificial and real system identification benchmarks, as well as other related dynamical settings. The obtained results indicate that the proposed approaches are competitive when compared to the state of the art in the aforementioned complicated setups and that GP-based dynamical modeling is a promising area of research.O estudo dos sistemas dinâmicos encontra-se disseminado em várias áreas do conhecimento. Dados sequenciais são gerados constantemente por diversos fenômenos, a maioria deles não passíveis de serem explicados por equações derivadas de leis físicas e estruturas conhecidas. Nesse contexto, esta tese tem como objetivo abordar a tarefa de identificação de sistemas não lineares, por meio da qual são obtidos modelos diretamente a partir de observações sequenciais. Mais especificamente, nós abordamos cenários desafiadores, tais como o aprendizado de relações temporais a partir de dados ruidosos, dados contendo valores discrepantes (outliers) e grandes conjuntos de dados. Na interface entre estatísticas, ciência da computação, análise de dados e engenharia encontra-se a comunidade de aprendizagem de máquina, que fornece ferramentas poderosas para encontrar padrões a partir de dados e fazer previsões. Nesse sentido, seguimos métodos baseados em Processos Gaussianos (PGs), uma abordagem probabilística prática para a aprendizagem de máquinas de kernel. A partir de avanços recentes em modelagem geral baseada em PGs, introduzimos novas contribuições para o exercício de modelagem dinâmica. Desse modo, propomos a nova família de modelos de Processos Gaussianos Recorrentes (RGPs, da sigla em inglês) e estendemos seu conceito para lidar com requisitos de robustez a outliers e aprendizagem estocástica escalável. A estrutura hierárquica e latente (não-observada) desses modelos impõe expressões não- analíticas, que são resolvidas com a derivação de novos algoritmos variacionais para realizar inferência determinista aproximada como um problema de otimização. As soluções apresentadas permitem a propagação da incerteza tanto no treinamento quanto no teste, com foco em realizar simulação livre. Nós avaliamos em detalhe os métodos propostos com benchmarks artificiais e reais da área de identificação de sistemas, assim como outras tarefas envolvendo dados dinâmicos. Os resultados obtidos indicam que nossas propostas são competitivas quando comparadas ao estado da arte, mesmo nos cenários que apresentam as complicações supracitadas, e que a modelagem dinâmica baseada em PGs é uma área de pesquisa promissora.TeleinformáticaProcessos GaussianosSistemas não-linearesAprendizagem robustaStochastic learningGaussian processesDynamical modelingNonlinear system identificationRobust learningRecurrent gaussian processes and robust dynamical modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2017_tese_clcmattos.pdf2017_tese_clcmattos.pdfapplication/pdf6102699http://repositorio.ufc.br/bitstream/riufc/25604/1/2017_tese_clcmattos.pdf0a85b8841d77f0685b1153ee8ede0d85MD51riufc/256042023-03-30 10:22:21.437oai:repositorio.ufc.br:riufc/25604Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-03-30T13:22:21Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Recurrent gaussian processes and robust dynamical modeling
title Recurrent gaussian processes and robust dynamical modeling
spellingShingle Recurrent gaussian processes and robust dynamical modeling
Mattos, César Lincoln Cavalcante
Teleinformática
Processos Gaussianos
Sistemas não-lineares
Aprendizagem robusta
Stochastic learning
Gaussian processes
Dynamical modeling
Nonlinear system identification
Robust learning
title_short Recurrent gaussian processes and robust dynamical modeling
title_full Recurrent gaussian processes and robust dynamical modeling
title_fullStr Recurrent gaussian processes and robust dynamical modeling
title_full_unstemmed Recurrent gaussian processes and robust dynamical modeling
title_sort Recurrent gaussian processes and robust dynamical modeling
author Mattos, César Lincoln Cavalcante
author_facet Mattos, César Lincoln Cavalcante
author_role author
dc.contributor.author.fl_str_mv Mattos, César Lincoln Cavalcante
dc.contributor.advisor1.fl_str_mv Barreto, Guilherme de Alencar
contributor_str_mv Barreto, Guilherme de Alencar
dc.subject.por.fl_str_mv Teleinformática
Processos Gaussianos
Sistemas não-lineares
Aprendizagem robusta
Stochastic learning
Gaussian processes
Dynamical modeling
Nonlinear system identification
Robust learning
topic Teleinformática
Processos Gaussianos
Sistemas não-lineares
Aprendizagem robusta
Stochastic learning
Gaussian processes
Dynamical modeling
Nonlinear system identification
Robust learning
description The study of dynamical systems is widespread across several areas of knowledge. Sequential data is generated constantly by different phenomena, most of them we cannot explain by equations derived from known physical laws and structures. In such context, this thesis aims to tackle the task of nonlinear system identification, which builds models directly from sequential measurements. More specifically, we approach challenging scenarios, such as learning temporal relations from noisy data, data containing discrepant values (outliers) and large datasets. In the interface between statistics, computer science, data analysis and engineering lies the machine learning community, which brings powerful tools to find patterns from data and make predictions. In that sense, we follow methods based on Gaussian Processes (GP), a principled, practical, probabilistic approach to learning in kernel machines. We aim to exploit recent advances in general GP modeling to bring new contributions to the dynamical modeling exercise. Thus, we propose the novel family of Recurrent Gaussian Processes (RGPs) models and extend their concept to handle outlier-robust requirements and scalable stochastic learning. The hierarchical latent (non-observed) structure of those models impose intractabilities in the form of non-analytical expressions, which are handled with the derivation of new variational algorithms to perform approximate deterministic inference as an optimization problem. The presented solutions enable uncertainty propagation on both training and testing, with focus on free simulation. We comprehensively evaluate the proposed methods with both artificial and real system identification benchmarks, as well as other related dynamical settings. The obtained results indicate that the proposed approaches are competitive when compared to the state of the art in the aforementioned complicated setups and that GP-based dynamical modeling is a promising area of research.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-09-12T16:29:18Z
dc.date.available.fl_str_mv 2017-09-12T16:29:18Z
dc.date.issued.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MATTOS, C. L. C. Recurrent gaussian processes and robust dynamical modeling. 2017. 189 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/25604
identifier_str_mv MATTOS, C. L. C. Recurrent gaussian processes and robust dynamical modeling. 2017. 189 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.
url http://www.repositorio.ufc.br/handle/riufc/25604
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/25604/1/2017_tese_clcmattos.pdf
bitstream.checksum.fl_str_mv 0a85b8841d77f0685b1153ee8ede0d85
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792974090469376