SmartLTM: Larger-than-memory database storage for hybrid database systems

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Amora, Paulo Roberto Pessoa
Orientador(a): Machado, Javam de Castro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/42180
Resumo: Random access memory (RAM) is a valuable resource in computer systems, but as time passes, computer systems allow for more memory and it is becoming more affordable. Main-memory DBMS can offer hybrid and evolving storage architectures, instead of the traditional row or column storage layouts. In spite of affordability, RAM is still a limited resource concerning available storage space in comparison to conventional storage devices. Due to this space restriction, techniques that leverage a trade-off between storage space and query performance were developed and, consequently, they should be applied to data that is not frequently accessed or updated. This work proposes a data eviction mechanism that considers the decisions previously taken by the DBMS in optimizing data storage according to query workload. We discuss how to migrate data, access it and the main differences between our approach and a row-based one. We also analyze the behavior of our solution in different storage media. Experiments show that cold data access with our approach incurs an acceptable 17% of throughput loss, against 26% of the row-based one, while retrieving only half of the data in average to answer queries.
id UFC-7_6f6548399cada3873b08999fc43c4444
oai_identifier_str oai:repositorio.ufc.br:riufc/42180
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Amora, Paulo Roberto PessoaMachado, Javam de Castro2019-05-31T17:59:04Z2019-05-31T17:59:04Z2018AMORA, Paulo Roberto Pessoa. SmartLTM: Larger-than-memory database storage for hybrid database systems. 2018. 69 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/42180Random access memory (RAM) is a valuable resource in computer systems, but as time passes, computer systems allow for more memory and it is becoming more affordable. Main-memory DBMS can offer hybrid and evolving storage architectures, instead of the traditional row or column storage layouts. In spite of affordability, RAM is still a limited resource concerning available storage space in comparison to conventional storage devices. Due to this space restriction, techniques that leverage a trade-off between storage space and query performance were developed and, consequently, they should be applied to data that is not frequently accessed or updated. This work proposes a data eviction mechanism that considers the decisions previously taken by the DBMS in optimizing data storage according to query workload. We discuss how to migrate data, access it and the main differences between our approach and a row-based one. We also analyze the behavior of our solution in different storage media. Experiments show that cold data access with our approach incurs an acceptable 17% of throughput loss, against 26% of the row-based one, while retrieving only half of the data in average to answer queries.Memória de acesso randômico (RAM) é um recurso valioso em sistemas computacionais, mas com o passar do tempo, mais memória tem sido disponibilizada para estes sistemas, uma vez que seu valor de aquisição tem descrescido ao longo dos anos. SGBDs em memória podem ser projetados com uma arquitetura de armazenamento híbrido, diferentemente de layouts tradicionais de organização dos dados em registros e colunas. Apesar de sua crescente facilidade de aquisição, memória RAM ainda é um recurso limitado em espaço de armazenamento em comparação com os modernos dispositivos de armazenamento persistente. Devido à restrição de espaço das RAMs, estudos tem sido realizados para melhorar o desempenho do processamento de consultas considerando o espaço de armazenamento dos dados, em particular procurando alocar os dados utilizados com menos frequencia em locais de armazenamento de menor desempenho, abrindo espaço para ocupar a memória mais rápida com dados de uso mais frequente. Esta dissertação propõe um mecanismo de despejo de dados que considera a estrutura de armazenamento de um SGBD previamente definida como forma de otimizar o armazenamento dos dados de acordo com a carga de trabalho que lhe é submetida. Nesta dissertação discutimos como migrar, de maneira automática, os dados da memória mais rápida para a memória persistente de maior capacidade mas mais lenta, as estruturas de dados de acesso e as principais diferenças entre a nossa abordagem e aquelas que tem como base o armazenamento de registros. Nós também analizamos o comportamento da nossa estratégia para diferentes dispositivos de armazenamento. Experimentos mostraram que o acesso a dados ditos frios em nossa abordagem leva a uma perda de desempenho de apenas 17% do tempo de acesso enquanto que esta perda é de 26% em abordagens baseadas em armazenamento de registros, ao mesmo tempo em que apresentamos uma taxa de 50% de acesso aos dados em disco para responder às consultas.StorageAdaptivitySelf-tuningDatabasesSmartLTM: Larger-than-memory database storage for hybrid database systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/42180/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2018_dis_prpamora.pdf2018_dis_prpamora.pdfapplication/pdf1118083http://repositorio.ufc.br/bitstream/riufc/42180/3/2018_dis_prpamora.pdf203e33270238a55aae79752debb57b49MD53riufc/421802019-05-31 14:59:04.702oai:repositorio.ufc.br:riufc/42180Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-05-31T17:59:04Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv SmartLTM: Larger-than-memory database storage for hybrid database systems
title SmartLTM: Larger-than-memory database storage for hybrid database systems
spellingShingle SmartLTM: Larger-than-memory database storage for hybrid database systems
Amora, Paulo Roberto Pessoa
Storage
Adaptivity
Self-tuning
Databases
title_short SmartLTM: Larger-than-memory database storage for hybrid database systems
title_full SmartLTM: Larger-than-memory database storage for hybrid database systems
title_fullStr SmartLTM: Larger-than-memory database storage for hybrid database systems
title_full_unstemmed SmartLTM: Larger-than-memory database storage for hybrid database systems
title_sort SmartLTM: Larger-than-memory database storage for hybrid database systems
author Amora, Paulo Roberto Pessoa
author_facet Amora, Paulo Roberto Pessoa
author_role author
dc.contributor.author.fl_str_mv Amora, Paulo Roberto Pessoa
dc.contributor.advisor1.fl_str_mv Machado, Javam de Castro
contributor_str_mv Machado, Javam de Castro
dc.subject.por.fl_str_mv Storage
Adaptivity
Self-tuning
Databases
topic Storage
Adaptivity
Self-tuning
Databases
description Random access memory (RAM) is a valuable resource in computer systems, but as time passes, computer systems allow for more memory and it is becoming more affordable. Main-memory DBMS can offer hybrid and evolving storage architectures, instead of the traditional row or column storage layouts. In spite of affordability, RAM is still a limited resource concerning available storage space in comparison to conventional storage devices. Due to this space restriction, techniques that leverage a trade-off between storage space and query performance were developed and, consequently, they should be applied to data that is not frequently accessed or updated. This work proposes a data eviction mechanism that considers the decisions previously taken by the DBMS in optimizing data storage according to query workload. We discuss how to migrate data, access it and the main differences between our approach and a row-based one. We also analyze the behavior of our solution in different storage media. Experiments show that cold data access with our approach incurs an acceptable 17% of throughput loss, against 26% of the row-based one, while retrieving only half of the data in average to answer queries.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-05-31T17:59:04Z
dc.date.available.fl_str_mv 2019-05-31T17:59:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AMORA, Paulo Roberto Pessoa. SmartLTM: Larger-than-memory database storage for hybrid database systems. 2018. 69 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/42180
identifier_str_mv AMORA, Paulo Roberto Pessoa. SmartLTM: Larger-than-memory database storage for hybrid database systems. 2018. 69 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/42180
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/42180/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/42180/3/2018_dis_prpamora.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
203e33270238a55aae79752debb57b49
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793183075860480