Coloração acíclica

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Medeiros, Pedro Paulo de
Orientador(a): Araújo, Júlio César Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/40994
Resumo: We will present the state of the art for a sub-area of ​​coloration in graphs known as acyclic coloration. Given a G fi nite graph, we have an acyclic k-coloration of G when we have a proper k-coloration for G such that any two color classes induce in G a vector, that is, an acyclic subgraph. The smallest positive integer k such that G admits an acyclic k-coloration is the acyclic chromatic number of G, denoted by χa (G). We believe that this is the first text to summarize the state of the art for this problem, even considering other languages. We present the results organized by type. First, we present those related to the limitation for the acyclic chromatic number, referring to the cyclic coloration in vertices, in edges and acyclic coloration by lists in vertices and edges. Next, we list the results concerning the computational complexity of the problem of determining if it is possible to acyclically colorize a graph G with k colors, given a graph G and a positive integer k. Finally, we present open questions for future research.
id UFC-7_7691153d8af5d66b3d71286a71fce3c8
oai_identifier_str oai:repositorio.ufc.br:riufc/40994
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Medeiros, Pedro Paulo deAraújo, Júlio César Silva2019-04-23T18:13:37Z2019-04-23T18:13:37Z2019MEDEIROS, Pedro Paulo de. Coloração acíclica. 2019. 65 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/40994We will present the state of the art for a sub-area of ​​coloration in graphs known as acyclic coloration. Given a G fi nite graph, we have an acyclic k-coloration of G when we have a proper k-coloration for G such that any two color classes induce in G a vector, that is, an acyclic subgraph. The smallest positive integer k such that G admits an acyclic k-coloration is the acyclic chromatic number of G, denoted by χa (G). We believe that this is the first text to summarize the state of the art for this problem, even considering other languages. We present the results organized by type. First, we present those related to the limitation for the acyclic chromatic number, referring to the cyclic coloration in vertices, in edges and acyclic coloration by lists in vertices and edges. Next, we list the results concerning the computational complexity of the problem of determining if it is possible to acyclically colorize a graph G with k colors, given a graph G and a positive integer k. Finally, we present open questions for future research.Apresentaremos o estado da arte para uma subárea de coloração em grafos conhecida como coloração acíclica. Dado um grafo G finito, temos uma k-coloração acíclica de G quando temos uma k-coloração própria para G tal que quaisquer duas classes de cor induzem em G uma floresta, ou seja, um subgrafo acíclico. O menor inteiro positivo k tal que G admite uma k-coloração acíclica é o número cromático acíclico de G, denotado por χa(G). Acreditamos que este seja o primeiro texto a resumir o estado da arte para este problema, mesmo considerando outras línguas. Apresentamos os resultados organizados por tipo. Primeiro, apresentamos aqueles relativos à limitantes para o número cromático acíclico, referentes à coloração cíclica em vértices, em arestas e coloração acíclica por listas em vértices e arestas. Em seguida, listamos os resultados referentes à complexidade computacional do problema de determinar se é possível colorir aciclicamente um grafo G com k cores, dados um grafo G e um inteiro positivo k. Por fim, apresentamos problemas em aberto para a pesquisa futura.Análise combinatóriaTeoria dos grafosColoração de grafosColoração acíclicaCombinatorial analysisTheory of graphsColor in graphsAcyclic stainingColoração acíclicaAcyclic coloringinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2019_dis_ppmedeiros.pdf2019_dis_ppmedeiros.pdfDissertaçao de Pedro Pauloapplication/pdf1208035http://repositorio.ufc.br/bitstream/riufc/40994/3/2019_dis_ppmedeiros.pdf513756a73922afa86a843f30facde325MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/40994/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/409942019-08-16 14:50:10.497oai:repositorio.ufc.br:riufc/40994Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-08-16T17:50:10Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Coloração acíclica
dc.title.en.pt_BR.fl_str_mv Acyclic coloring
title Coloração acíclica
spellingShingle Coloração acíclica
Medeiros, Pedro Paulo de
Análise combinatória
Teoria dos grafos
Coloração de grafos
Coloração acíclica
Combinatorial analysis
Theory of graphs
Color in graphs
Acyclic staining
title_short Coloração acíclica
title_full Coloração acíclica
title_fullStr Coloração acíclica
title_full_unstemmed Coloração acíclica
title_sort Coloração acíclica
author Medeiros, Pedro Paulo de
author_facet Medeiros, Pedro Paulo de
author_role author
dc.contributor.author.fl_str_mv Medeiros, Pedro Paulo de
dc.contributor.advisor1.fl_str_mv Araújo, Júlio César Silva
contributor_str_mv Araújo, Júlio César Silva
dc.subject.por.fl_str_mv Análise combinatória
Teoria dos grafos
Coloração de grafos
Coloração acíclica
Combinatorial analysis
Theory of graphs
Color in graphs
Acyclic staining
topic Análise combinatória
Teoria dos grafos
Coloração de grafos
Coloração acíclica
Combinatorial analysis
Theory of graphs
Color in graphs
Acyclic staining
description We will present the state of the art for a sub-area of ​​coloration in graphs known as acyclic coloration. Given a G fi nite graph, we have an acyclic k-coloration of G when we have a proper k-coloration for G such that any two color classes induce in G a vector, that is, an acyclic subgraph. The smallest positive integer k such that G admits an acyclic k-coloration is the acyclic chromatic number of G, denoted by χa (G). We believe that this is the first text to summarize the state of the art for this problem, even considering other languages. We present the results organized by type. First, we present those related to the limitation for the acyclic chromatic number, referring to the cyclic coloration in vertices, in edges and acyclic coloration by lists in vertices and edges. Next, we list the results concerning the computational complexity of the problem of determining if it is possible to acyclically colorize a graph G with k colors, given a graph G and a positive integer k. Finally, we present open questions for future research.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-04-23T18:13:37Z
dc.date.available.fl_str_mv 2019-04-23T18:13:37Z
dc.date.issued.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MEDEIROS, Pedro Paulo de. Coloração acíclica. 2019. 65 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2019.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/40994
identifier_str_mv MEDEIROS, Pedro Paulo de. Coloração acíclica. 2019. 65 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2019.
url http://www.repositorio.ufc.br/handle/riufc/40994
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/40994/3/2019_dis_ppmedeiros.pdf
http://repositorio.ufc.br/bitstream/riufc/40994/4/license.txt
bitstream.checksum.fl_str_mv 513756a73922afa86a843f30facde325
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793105255792640