Previsão da pobreza do Estado do Ceará

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Angélica Caitano da
Orientador(a): Araujo, Jair Andrade de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/70919
Resumo: In recent decades, poverty and its determinants have persisted in being analyzed, with the main aim of understanding the scenario of the portion of the population that lives with insufficient income and even in unacceptable living conditions. Access to accurate and up-to-date data and techniques on poverty is essential for governments and policymakers to identify vulnerable areas, allowing them to obtain reliable knowledge through data science. Anticipating poverty is essential so that governments can help in preventing the armed forces of poverty and promoting the reallocation of resources. This study uses the Machine Learning technique to make poverty forecasts based on data from the last Family Organization Survey (POF) from 2017-2018, in a record for the state of Ceará. Various models are estimated (Logistic Regressão, LASSO and Linear Regressão). Of these methods, the one that has the greatest accuracy was the method that was LASSO and the logistical regressão had the greatest AUC ROC. Among the conclusions, it is possible to foresee a correctly classified poor taxa of 80.5% for the logistic model, and for LASSO 80.8%. It can be affirmed that 80% of the individuals on the basis of the test will be poor in the State of Ceará. Both the final models have similar impact variables, they are: type, number of people, number of children, wall, instruction, roof, type of situation, sex and age. This assumption is important because knowing which variables have a direct impact, it is possible to direct the investments that vary because it is known how important they are to anticipate poverty in Ceará.
id UFC-7_79ed4fdb5bd702ce9ec6ebcc8980e93e
oai_identifier_str oai:repositorio.ufc.br:riufc/70919
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Silva, Angélica Caitano daCampêlo, Guaracyane LimaAraujo, Jair Andrade de2023-02-17T19:32:12Z2023-02-17T19:32:12Z2022SILVA, A. C. Previsão da pobreza do Estado do Ceará. 2022. 77 f. Dissertação (Mestrado em Economia Rural) - Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/70919In recent decades, poverty and its determinants have persisted in being analyzed, with the main aim of understanding the scenario of the portion of the population that lives with insufficient income and even in unacceptable living conditions. Access to accurate and up-to-date data and techniques on poverty is essential for governments and policymakers to identify vulnerable areas, allowing them to obtain reliable knowledge through data science. Anticipating poverty is essential so that governments can help in preventing the armed forces of poverty and promoting the reallocation of resources. This study uses the Machine Learning technique to make poverty forecasts based on data from the last Family Organization Survey (POF) from 2017-2018, in a record for the state of Ceará. Various models are estimated (Logistic Regressão, LASSO and Linear Regressão). Of these methods, the one that has the greatest accuracy was the method that was LASSO and the logistical regressão had the greatest AUC ROC. Among the conclusions, it is possible to foresee a correctly classified poor taxa of 80.5% for the logistic model, and for LASSO 80.8%. It can be affirmed that 80% of the individuals on the basis of the test will be poor in the State of Ceará. Both the final models have similar impact variables, they are: type, number of people, number of children, wall, instruction, roof, type of situation, sex and age. This assumption is important because knowing which variables have a direct impact, it is possible to direct the investments that vary because it is known how important they are to anticipate poverty in Ceará.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).Nas últimas décadas, é recorrente a análise da pobreza e dos seus determinantes com o principal intuito de entender o cenário dessa parcela da população que vive com uma renda insuficiente e até mesmo em condições de vida inaceitáveis. O acesso aos dados e às técnicas precisas e atualizadas sobre a pobreza é essencial para que os governos e formuladores de políticas identifiquem as áreas vulneráveis, permitindo-lhes obter conhecimento confiável por meio da ciência de dados. Este estudo utiliza a técnica de Machine Learning para fazer a previsão de pobreza com a base de dados da última Pesquisa de Orçamentos Familiares (POF) de 2017- 2018, em um recorte para o estado do Ceará. Estimam-se diversos modelos (Regressão Logística, LASSO e Regressão Linear). Dentre os métodos, o que teve maior acurácia foi o método LASSO. A Regressão logística teve maior AUC ROC. Entre as conclusões, é possível prever uma taxa de pobres classificados, corretamente de 80,5 % para o modelo logístico, e para LASSO 80,8%. Pode-se afirmar que 80% dos indivíduos da base de teste são pobres no estado do Ceará. Ambos os modelos finais tiveram variáveis de impacto parecidas, são elas: lixo, número de pessoas, número de crianças, parede, instrução, telhado, tipo de situação, sexo e idade. Esse resultado é importante, pois sabendo quais variáveis impactam diretamente, podese direcionar os investimentos nessas variáveis devido à importância para prever a pobreza no Ceará.PobrezaModelos de PrediçãoMachine LearningPrevisão da pobreza do Estado do Cearáinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCORIGINAL2022_dis_acsilva.pdf2022_dis_acsilva.pdfapplication/pdf1763640http://repositorio.ufc.br/bitstream/riufc/70919/11/2022_dis_acsilva.pdfea677ef3e542ab08e5d9ed568e6481fdMD511LICENSElicense.txtlicense.txttext/plain; charset=utf-81784http://repositorio.ufc.br/bitstream/riufc/70919/12/license.txt82c2f88b8007164a64e9b9207328aedfMD512riufc/709192023-09-20 10:19:20.527oai:repositorio.ufc.br:riufc/70919Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFDQpUaGlzIHNhbXBsZSBsaWNlbnNlIGlzIHByb3ZpZGVkIGZvciBpbmZvcm1hdGlvbmFsIHB1cnBvc2VzIG9ubHkuDQoNCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UNCg0KQnkgc2lnbmluZyBhbmQgc3VibWl0dGluZyB0aGlzIGxpY2Vuc2UsIHlvdSAodGhlIGF1dGhvcihzKSBvciBjb3B5cmlnaHQNCm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLA0KdHJhbnNsYXRlIChhcyBkZWZpbmVkIGJlbG93KSwgYW5kL29yIGRpc3RyaWJ1dGUgeW91ciBzdWJtaXNzaW9uIChpbmNsdWRpbmcNCnRoZSBhYnN0cmFjdCkgd29ybGR3aWRlIGluIHByaW50IGFuZCBlbGVjdHJvbmljIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bSwNCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uDQoNCllvdSBhZ3JlZSB0aGF0IERTVSBtYXksIHdpdGhvdXQgY2hhbmdpbmcgdGhlIGNvbnRlbnQsIHRyYW5zbGF0ZSB0aGUNCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4NCg0KWW91IGFsc28gYWdyZWUgdGhhdCBEU1UgbWF5IGtlZXAgbW9yZSB0aGFuIG9uZSBjb3B5IG9mIHRoaXMgc3VibWlzc2lvbiBmb3INCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uDQoNCllvdSByZXByZXNlbnQgdGhhdCB0aGUgc3VibWlzc2lvbiBpcyB5b3VyIG9yaWdpbmFsIHdvcmssIGFuZCB0aGF0IHlvdSBoYXZlDQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQNCnRoYXQgeW91ciBzdWJtaXNzaW9uIGRvZXMgbm90LCB0byB0aGUgYmVzdCBvZiB5b3VyIGtub3dsZWRnZSwgaW5mcmluZ2UgdXBvbg0KYW55b25lJ3MgY29weXJpZ2h0Lg0KDQpJZiB0aGUgc3VibWlzc2lvbiBjb250YWlucyBtYXRlcmlhbCBmb3Igd2hpY2ggeW91IGRvIG5vdCBob2xkIGNvcHlyaWdodCwNCnlvdSByZXByZXNlbnQgdGhhdCB5b3UgaGF2ZSBvYnRhaW5lZCB0aGUgdW5yZXN0cmljdGVkIHBlcm1pc3Npb24gb2YgdGhlDQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdA0Kc3VjaCB0aGlyZC1wYXJ0eSBvd25lZCBtYXRlcmlhbCBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIGFja25vd2xlZGdlZA0Kd2l0aGluIHRoZSB0ZXh0IG9yIGNvbnRlbnQgb2YgdGhlIHN1Ym1pc3Npb24uDQoNCklGIFRIRSBTVUJNSVNTSU9OIElTIEJBU0VEIFVQT04gV09SSyBUSEFUIEhBUyBCRUVOIFNQT05TT1JFRCBPUiBTVVBQT1JURUQNCkJZIEFOIEFHRU5DWSBPUiBPUkdBTklaQVRJT04gT1RIRVIgVEhBTiBEU1UsIFlPVSBSRVBSRVNFTlQgVEhBVCBZT1UgSEFWRQ0KRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSA0KQ09OVFJBQ1QgT1IgQUdSRUVNRU5ULg0KDQpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQ0Kc3VibWlzc2lvbiwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGFsdGVyYXRpb24sIG90aGVyIHRoYW4gYXMgYWxsb3dlZCBieSB0aGlzDQpsaWNlbnNlLCB0byB5b3VyIHN1Ym1pc3Npb24uDQo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-09-20T13:19:20Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Previsão da pobreza do Estado do Ceará
title Previsão da pobreza do Estado do Ceará
spellingShingle Previsão da pobreza do Estado do Ceará
Silva, Angélica Caitano da
Pobreza
Modelos de Predição
Machine Learning
title_short Previsão da pobreza do Estado do Ceará
title_full Previsão da pobreza do Estado do Ceará
title_fullStr Previsão da pobreza do Estado do Ceará
title_full_unstemmed Previsão da pobreza do Estado do Ceará
title_sort Previsão da pobreza do Estado do Ceará
author Silva, Angélica Caitano da
author_facet Silva, Angélica Caitano da
author_role author
dc.contributor.co-advisor.none.fl_str_mv Campêlo, Guaracyane Lima
dc.contributor.author.fl_str_mv Silva, Angélica Caitano da
dc.contributor.advisor1.fl_str_mv Araujo, Jair Andrade de
contributor_str_mv Araujo, Jair Andrade de
dc.subject.por.fl_str_mv Pobreza
Modelos de Predição
Machine Learning
topic Pobreza
Modelos de Predição
Machine Learning
description In recent decades, poverty and its determinants have persisted in being analyzed, with the main aim of understanding the scenario of the portion of the population that lives with insufficient income and even in unacceptable living conditions. Access to accurate and up-to-date data and techniques on poverty is essential for governments and policymakers to identify vulnerable areas, allowing them to obtain reliable knowledge through data science. Anticipating poverty is essential so that governments can help in preventing the armed forces of poverty and promoting the reallocation of resources. This study uses the Machine Learning technique to make poverty forecasts based on data from the last Family Organization Survey (POF) from 2017-2018, in a record for the state of Ceará. Various models are estimated (Logistic Regressão, LASSO and Linear Regressão). Of these methods, the one that has the greatest accuracy was the method that was LASSO and the logistical regressão had the greatest AUC ROC. Among the conclusions, it is possible to foresee a correctly classified poor taxa of 80.5% for the logistic model, and for LASSO 80.8%. It can be affirmed that 80% of the individuals on the basis of the test will be poor in the State of Ceará. Both the final models have similar impact variables, they are: type, number of people, number of children, wall, instruction, roof, type of situation, sex and age. This assumption is important because knowing which variables have a direct impact, it is possible to direct the investments that vary because it is known how important they are to anticipate poverty in Ceará.
publishDate 2022
dc.date.issued.fl_str_mv 2022
dc.date.accessioned.fl_str_mv 2023-02-17T19:32:12Z
dc.date.available.fl_str_mv 2023-02-17T19:32:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, A. C. Previsão da pobreza do Estado do Ceará. 2022. 77 f. Dissertação (Mestrado em Economia Rural) - Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, 2022.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/70919
identifier_str_mv SILVA, A. C. Previsão da pobreza do Estado do Ceará. 2022. 77 f. Dissertação (Mestrado em Economia Rural) - Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, 2022.
url http://www.repositorio.ufc.br/handle/riufc/70919
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/70919/11/2022_dis_acsilva.pdf
http://repositorio.ufc.br/bitstream/riufc/70919/12/license.txt
bitstream.checksum.fl_str_mv ea677ef3e542ab08e5d9ed568e6481fd
82c2f88b8007164a64e9b9207328aedf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793070789099520