Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais
| Ano de defesa: | 2006 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/16090 |
Resumo: | In this work, dynamic neural networks are evaluated as non-linear models for efficient prediction of complex time series. Among the evaluated architectures are the FTDNN networks, Elman and NARX. The predictive power of these networks are tested in prediction task a step ahead and multiple-steps-forward. To this end, the following time series are used: Series Laser chaotic Mackey-Glass chaotic series, and network traffic series of computers with self similar characteristics. The use of NARX network prediction time series is a contribution of this thesis. This network has a recurrent neural architecture originally used to identify input-output nonlinear systems. The input NARX network is formed by two sliding windows (sliding window time), one slipping over the other input signal and which slides on the output signal. When applied to chaotic time series prediction, the NARX network is usually designed as an autoregressive nonlinear model (NAR), eliminating the output delay window. In this paper, we propose a simple strategy, but effective to allow the network NARX fully explore the input time slots and output in order to improve its predictive ability. The results show that the proposed approach outperforms the performance presented by predictors based on FTDNN and Elman networks. |
| id |
UFC-7_7fbeb3a2559690574414e6d0babe8be2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/16090 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Menezes Júnior, José Maria Pires deBarreto, Guilherme de Alencar2016-04-06T14:35:37Z2016-04-06T14:35:37Z2006MENEZES JÚNIOR, J. M. P. Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais. 2006. 116 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006.http://www.repositorio.ufc.br/handle/riufc/16090In this work, dynamic neural networks are evaluated as non-linear models for efficient prediction of complex time series. Among the evaluated architectures are the FTDNN networks, Elman and NARX. The predictive power of these networks are tested in prediction task a step ahead and multiple-steps-forward. To this end, the following time series are used: Series Laser chaotic Mackey-Glass chaotic series, and network traffic series of computers with self similar characteristics. The use of NARX network prediction time series is a contribution of this thesis. This network has a recurrent neural architecture originally used to identify input-output nonlinear systems. The input NARX network is formed by two sliding windows (sliding window time), one slipping over the other input signal and which slides on the output signal. When applied to chaotic time series prediction, the NARX network is usually designed as an autoregressive nonlinear model (NAR), eliminating the output delay window. In this paper, we propose a simple strategy, but effective to allow the network NARX fully explore the input time slots and output in order to improve its predictive ability. The results show that the proposed approach outperforms the performance presented by predictors based on FTDNN and Elman networks.Neste trabalho, redes neurais dinâmicas são avaliadas como modelos não-lineares eficientes para predição de séries temporais complexas. Entre as arquiteturas avaliadas estão as redes FTDNN, Elman e NARX. A capacidade preditiva destas redes são testadas em tarefas de predição de um-passo-adiante e múltiplos-passos-adiante. Para este fim, são usadas as seguintes séries temporais: série laser caótico, série caótica Mackey-Glass, além de séries de tráfego de rede de computadores com características auto-similares. O uso da rede NARX em predição de séries temporais é uma contribuição desta dissertação. Esta rede possui uma arquitetura neural recorrente usada originalmente para identificação entrada-saída de sistemas não-lineares. A entrada da rede NARX é formada por duas janelas deslizantes (sliding time window), uma que desliza sobre o sinal de entrada e outra que desliza sobre sinal de saída. Quando aplicada para predição caótica de séries temporais, a rede NARX é projetada geralmente como um modelo autoregressivo nãolinear (NAR), eliminando a janela de atraso da saída. Neste trabalho, é proposta uma estratégia simples, porém eficiente, para permitir que a rede NARX explore inteiramente as janelas de tempo da entrada e da saída, a fim de melhorar sua capacidade preditiva. Os resultados obtidos mostram que a abordagem proposta tem desempenho superior ao desempenho apresentado por preditores baseados nas redes FTDNN e Elman.TeleinformáticaRedes neurais (Computação)Comportamento caótico nos sistemasAnálise de séries temporaisRedes neurais dinâmicas para predição e modelagem não-linear de séries temporaisDynamic neural networks for nonlinear tools for time series prediction and modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2006_dis_jmpmenezesjunior.pdf2006_dis_jmpmenezesjunior.pdfapplication/pdf4137709http://repositorio.ufc.br/bitstream/riufc/16090/1/2006_dis_jmpmenezesjunior.pdfcdcbd51b8b430a0192d1be9541a4195bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/16090/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/160902022-02-23 10:28:48.945oai:repositorio.ufc.br:riufc/16090w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-02-23T13:28:48Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais |
| dc.title.en.pt_BR.fl_str_mv |
Dynamic neural networks for nonlinear tools for time series prediction and modeling |
| title |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais |
| spellingShingle |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais Menezes Júnior, José Maria Pires de Teleinformática Redes neurais (Computação) Comportamento caótico nos sistemas Análise de séries temporais |
| title_short |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais |
| title_full |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais |
| title_fullStr |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais |
| title_full_unstemmed |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais |
| title_sort |
Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais |
| author |
Menezes Júnior, José Maria Pires de |
| author_facet |
Menezes Júnior, José Maria Pires de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Menezes Júnior, José Maria Pires de |
| dc.contributor.advisor1.fl_str_mv |
Barreto, Guilherme de Alencar |
| contributor_str_mv |
Barreto, Guilherme de Alencar |
| dc.subject.por.fl_str_mv |
Teleinformática Redes neurais (Computação) Comportamento caótico nos sistemas Análise de séries temporais |
| topic |
Teleinformática Redes neurais (Computação) Comportamento caótico nos sistemas Análise de séries temporais |
| description |
In this work, dynamic neural networks are evaluated as non-linear models for efficient prediction of complex time series. Among the evaluated architectures are the FTDNN networks, Elman and NARX. The predictive power of these networks are tested in prediction task a step ahead and multiple-steps-forward. To this end, the following time series are used: Series Laser chaotic Mackey-Glass chaotic series, and network traffic series of computers with self similar characteristics. The use of NARX network prediction time series is a contribution of this thesis. This network has a recurrent neural architecture originally used to identify input-output nonlinear systems. The input NARX network is formed by two sliding windows (sliding window time), one slipping over the other input signal and which slides on the output signal. When applied to chaotic time series prediction, the NARX network is usually designed as an autoregressive nonlinear model (NAR), eliminating the output delay window. In this paper, we propose a simple strategy, but effective to allow the network NARX fully explore the input time slots and output in order to improve its predictive ability. The results show that the proposed approach outperforms the performance presented by predictors based on FTDNN and Elman networks. |
| publishDate |
2006 |
| dc.date.issued.fl_str_mv |
2006 |
| dc.date.accessioned.fl_str_mv |
2016-04-06T14:35:37Z |
| dc.date.available.fl_str_mv |
2016-04-06T14:35:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MENEZES JÚNIOR, J. M. P. Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais. 2006. 116 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/16090 |
| identifier_str_mv |
MENEZES JÚNIOR, J. M. P. Redes neurais dinâmicas para predição e modelagem não-linear de séries temporais. 2006. 116 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2006. |
| url |
http://www.repositorio.ufc.br/handle/riufc/16090 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/16090/1/2006_dis_jmpmenezesjunior.pdf http://repositorio.ufc.br/bitstream/riufc/16090/2/license.txt |
| bitstream.checksum.fl_str_mv |
cdcbd51b8b430a0192d1be9541a4195b 8c4401d3d14722a7ca2d07c782a1aab3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793259697405952 |