Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Dantas, Davi Monteiro
Orientador(a): Almeida, Carlos Alberto Santos de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/13704
Resumo: One way to solve the hierarchy problem and therefore unify the fundamental forces is to assume, under the theoretical point of view, that our four-dimensional space (Brane) is housed in a space of higher dimensionality (Bulk). We call all that extra dimension which is not present in our Brana. The idea of extra dimensions to include unification of fundamental forces date from the 30s of last century, with the innovative proposal of Kaluza and Klein, and has been evolving ever since its formulation. Thus, other innovative proposals like that of the work of Randall and Sundrum have created new possibilities for the study, although it is curious that cite not have any experimental evidence to date that these dimensions exist. Fundamental fermionic particles have as one of its interesting properties the existence of left and right chiral modes, this information widely studied in the Standard Model and Supersymmetry in the call. In this article we treat on the location of the chiral modes, massless and massive, the fermionic fields of spin 1/2 in a six-dimensional space of type Conifold solved. This space has an adjustable parameter which allows to recover the geometry of other works of literature. Beyond this generalization was possible to find other interesting results as the thickening of the Brana and smoothing the model studied in 6D. Looking at work that the ratio of chiral modes is strictly dependent on the choice of coupling fields used. For free fermions chiral modes are identical. Regarding the location of Massive modes, we find that by rewriting the Dirac equation, obtained from our action, in a way kind of Schrödinger equation, we find a term potential. We found that when using the factors derived from the sixth dimension as a term coupling, we obtain results similar to a Yukawa coupling in five dimensions.
id UFC-7_8641f50a5dab67682b0616f4f887ddd5
oai_identifier_str oai:repositorio.ufc.br:riufc/13704
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Dantas, Davi MonteiroAlmeida, Carlos Alberto Santos de2015-10-22T21:32:16Z2015-10-22T21:32:16Z2012DANTAS, D. M. Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold. 2012. 83 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.http://www.repositorio.ufc.br/handle/riufc/13704One way to solve the hierarchy problem and therefore unify the fundamental forces is to assume, under the theoretical point of view, that our four-dimensional space (Brane) is housed in a space of higher dimensionality (Bulk). We call all that extra dimension which is not present in our Brana. The idea of extra dimensions to include unification of fundamental forces date from the 30s of last century, with the innovative proposal of Kaluza and Klein, and has been evolving ever since its formulation. Thus, other innovative proposals like that of the work of Randall and Sundrum have created new possibilities for the study, although it is curious that cite not have any experimental evidence to date that these dimensions exist. Fundamental fermionic particles have as one of its interesting properties the existence of left and right chiral modes, this information widely studied in the Standard Model and Supersymmetry in the call. In this article we treat on the location of the chiral modes, massless and massive, the fermionic fields of spin 1/2 in a six-dimensional space of type Conifold solved. This space has an adjustable parameter which allows to recover the geometry of other works of literature. Beyond this generalization was possible to find other interesting results as the thickening of the Brana and smoothing the model studied in 6D. Looking at work that the ratio of chiral modes is strictly dependent on the choice of coupling fields used. For free fermions chiral modes are identical. Regarding the location of Massive modes, we find that by rewriting the Dirac equation, obtained from our action, in a way kind of Schrödinger equation, we find a term potential. We found that when using the factors derived from the sixth dimension as a term coupling, we obtain results similar to a Yukawa coupling in five dimensions.Uma das formas de resolver o Problema de Hierarquia e por consequência unificar as forças fundamentais da natureza é assumir, sob o ponto de vista teórico, que nosso espaço quadrimensional (brana) está inserido em um espaço de dimensionalidade maior (bulk). Chamamos de dimensão extra toda aquela que não está presente em nossa brana. A idéia de incluir dimensões extras para unificação de forças fundamentais data dos anos 30 do século passado, com a inovadora proposta de Kaluza e Klein, e vem evoluindo sua formulação desde então. Assim, outras propostas inovadoras como aquela do trabalho de Randall e Sundrum, criaram novas possibilidades para o estudo, embora seja interessante citar que não possuímos nenhuma evidência experimental até o presente momento de que tais dimensões existam. Partículas fundamentais fermiônicas têm como uma de suas propriedades interessantes a existência dos modos quirais direito e esquerdo, informação esta bastante estudada no Modelo Padrão assim como em Supersimetria. Nesse trabalho tratamos sobre a localização dos modos quirais, sem massa e massivo, de campos fermiônicos de spin 1/2 em uma espaço de seis dimensões do tipo Conifold Resolvido. Este espaço possui um parâmetro regulável, o qual permite obter geometrias de outros trabalhos da literatura como casos particulares. Além desta generalização, foi possível encontrar outros resultados interessantes como o espessamento da brana e suavização do modelo estudado em 6D. Observaremos também que a relação dos modos quirais é estritamente dependente da escolha do acoplamento de campos utilizado. Para férmions livres, os modos quirais serão idênticos. Quanto à localização de Modos Massivos, verificaremos que ao reescrever a equação de Dirac, obtida a partir de nossa ação, em uma forma do tipo equação de Schrödinger, encontraremos um termo de potencial. Estudaremos que ao se utilizar os fatores derivados da sexta dimensão como um termo de acoplamento, obteremos resultado semelhante ao de um acoplamento Yukawa em cinco dimensões.Mundo de branaFérmionsConifoldBraneworldsFermion localizationConifoldLocalização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifoldinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2012_dis_dmdantas.pdf2012_dis_dmdantas.pdfapplication/pdf4713678http://repositorio.ufc.br/bitstream/riufc/13704/1/2012_dis_dmdantas.pdff91a14fbcd068cfe00c42afc012b1a22MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/13704/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/137042018-12-18 12:49:18.894oai:repositorio.ufc.br:riufc/13704w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2018-12-18T15:49:18Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
title Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
spellingShingle Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
Dantas, Davi Monteiro
Mundo de brana
Férmions
Conifold
Braneworlds
Fermion localization
Conifold
title_short Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
title_full Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
title_fullStr Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
title_full_unstemmed Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
title_sort Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold
author Dantas, Davi Monteiro
author_facet Dantas, Davi Monteiro
author_role author
dc.contributor.author.fl_str_mv Dantas, Davi Monteiro
dc.contributor.advisor1.fl_str_mv Almeida, Carlos Alberto Santos de
contributor_str_mv Almeida, Carlos Alberto Santos de
dc.subject.por.fl_str_mv Mundo de brana
Férmions
Conifold
Braneworlds
Fermion localization
Conifold
topic Mundo de brana
Férmions
Conifold
Braneworlds
Fermion localization
Conifold
description One way to solve the hierarchy problem and therefore unify the fundamental forces is to assume, under the theoretical point of view, that our four-dimensional space (Brane) is housed in a space of higher dimensionality (Bulk). We call all that extra dimension which is not present in our Brana. The idea of extra dimensions to include unification of fundamental forces date from the 30s of last century, with the innovative proposal of Kaluza and Klein, and has been evolving ever since its formulation. Thus, other innovative proposals like that of the work of Randall and Sundrum have created new possibilities for the study, although it is curious that cite not have any experimental evidence to date that these dimensions exist. Fundamental fermionic particles have as one of its interesting properties the existence of left and right chiral modes, this information widely studied in the Standard Model and Supersymmetry in the call. In this article we treat on the location of the chiral modes, massless and massive, the fermionic fields of spin 1/2 in a six-dimensional space of type Conifold solved. This space has an adjustable parameter which allows to recover the geometry of other works of literature. Beyond this generalization was possible to find other interesting results as the thickening of the Brana and smoothing the model studied in 6D. Looking at work that the ratio of chiral modes is strictly dependent on the choice of coupling fields used. For free fermions chiral modes are identical. Regarding the location of Massive modes, we find that by rewriting the Dirac equation, obtained from our action, in a way kind of Schrödinger equation, we find a term potential. We found that when using the factors derived from the sixth dimension as a term coupling, we obtain results similar to a Yukawa coupling in five dimensions.
publishDate 2012
dc.date.issued.fl_str_mv 2012
dc.date.accessioned.fl_str_mv 2015-10-22T21:32:16Z
dc.date.available.fl_str_mv 2015-10-22T21:32:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DANTAS, D. M. Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold. 2012. 83 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/13704
identifier_str_mv DANTAS, D. M. Localização de modos fermiônicos em uma geometria de seis dimensões do tipo Conifold. 2012. 83 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2012.
url http://www.repositorio.ufc.br/handle/riufc/13704
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/13704/1/2012_dis_dmdantas.pdf
http://repositorio.ufc.br/bitstream/riufc/13704/2/license.txt
bitstream.checksum.fl_str_mv f91a14fbcd068cfe00c42afc012b1a22
8c4401d3d14722a7ca2d07c782a1aab3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793271285219328