Algumas particularidades do plano hiperbólico.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Castro, Janio Kleo de Sousa
Orientador(a): Girão, Darlan Rabelo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/31951
Resumo: In the early years of mathematical training, students know certain facts and take them as unshakable truths. Gradually, some of these paradigms are broken, for example with the knowledge of structures such as complex numbers, where there is a number whose square is -1. With this, the students have contact with the flexibility of Mathematics, in what relates to the possibility of constructing new sets, usually extensions of the previous sets. This, however, does not reach Geometry. The patterns of formulas and formulas that are taught remain rigid in high school and even higher education, and even for a regular undergraduate Mathematics student, the information that parallel lines determine in a common transverse congruent alternating angles is considered as immutable. The purpose of this work is to present a non-Euclidean geometry developed throughout the 19th century and has as a target the teachers of Mathematics, to show them that, just as the order of factors can change the product, not always the sum of the angles of a triangle is equal to 180 degrees.
id UFC-7_8d4d9a8f54d6f1ba08ab8d83e5908735
oai_identifier_str oai:repositorio.ufc.br:riufc/31951
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Castro, Janio Kleo de SousaGirão, Darlan Rabelo2018-05-17T11:08:54Z2018-05-17T11:08:54Z2017CASTRO, Janio Kleo de Sousa. Algumas particularidades do plano hiperbólico. 2017. 50 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências , Universidade Federal do Ceará, Fortaleza, 2017http://www.repositorio.ufc.br/handle/riufc/31951In the early years of mathematical training, students know certain facts and take them as unshakable truths. Gradually, some of these paradigms are broken, for example with the knowledge of structures such as complex numbers, where there is a number whose square is -1. With this, the students have contact with the flexibility of Mathematics, in what relates to the possibility of constructing new sets, usually extensions of the previous sets. This, however, does not reach Geometry. The patterns of formulas and formulas that are taught remain rigid in high school and even higher education, and even for a regular undergraduate Mathematics student, the information that parallel lines determine in a common transverse congruent alternating angles is considered as immutable. The purpose of this work is to present a non-Euclidean geometry developed throughout the 19th century and has as a target the teachers of Mathematics, to show them that, just as the order of factors can change the product, not always the sum of the angles of a triangle is equal to 180 degrees.Nos primeiros anos da formação matemática, os alunos conhecem certos fatos e os tomam como verdades inabaláveis. Aos poucos, alguns desses paradigmas são quebrados, por exemplo com o conhecimento de estruturas como a dos números complexos, onde existe um número cujo quadrado vale –1. Com isso, os estudantes têm contato com a flexibilidade da Matemática, no que se relaciona à possibilidade de construção de conjuntos novos, em geral extensões dos conjuntos anteriores. Isso, porém, não chega à Geometria. Os padrões de formas e as fórmulas que são ensinadas continuam rígidos no ensino médio e até no ensino superior, sendo que, mesmo para um estudante regular de Licenciatura em Matemática, a informação de que retas paralelas determinam em uma transversal comum ângulos alternos internos congruentes é tida como imutável. A proposta deste trabalho é apresentar uma geometria não euclidiana desenvolvida ao longo do século 19 e tem como público-alvo os professores de Matemática, para mostrar-lhes que, assim como a ordem dos fatores pode alterar o produto, nem sempre a soma dos ângulos de um triângulo é igual a 180 graus.Geometria não euclidianaPlano hiperbólicoCurvas equidistantesNon-Euclidean geometryHyperbolic planeEquidistant curvesAlgumas particularidades do plano hiperbólico.Some peculiarities of the hyperbolic plane.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2017_dis_jkscastro.pdf2017_dis_jkscastro.pdfapplication/pdf564811http://repositorio.ufc.br/bitstream/riufc/31951/5/2017_dis_jkscastro.pdfa450c96d75df8370e4f39668d1127fceMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/31951/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56riufc/319512019-08-16 11:14:20.876oai:repositorio.ufc.br:riufc/31951Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-08-16T14:14:20Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Algumas particularidades do plano hiperbólico.
dc.title.en.pt_BR.fl_str_mv Some peculiarities of the hyperbolic plane.
title Algumas particularidades do plano hiperbólico.
spellingShingle Algumas particularidades do plano hiperbólico.
Castro, Janio Kleo de Sousa
Geometria não euclidiana
Plano hiperbólico
Curvas equidistantes
Non-Euclidean geometry
Hyperbolic plane
Equidistant curves
title_short Algumas particularidades do plano hiperbólico.
title_full Algumas particularidades do plano hiperbólico.
title_fullStr Algumas particularidades do plano hiperbólico.
title_full_unstemmed Algumas particularidades do plano hiperbólico.
title_sort Algumas particularidades do plano hiperbólico.
author Castro, Janio Kleo de Sousa
author_facet Castro, Janio Kleo de Sousa
author_role author
dc.contributor.author.fl_str_mv Castro, Janio Kleo de Sousa
dc.contributor.advisor1.fl_str_mv Girão, Darlan Rabelo
contributor_str_mv Girão, Darlan Rabelo
dc.subject.por.fl_str_mv Geometria não euclidiana
Plano hiperbólico
Curvas equidistantes
Non-Euclidean geometry
Hyperbolic plane
Equidistant curves
topic Geometria não euclidiana
Plano hiperbólico
Curvas equidistantes
Non-Euclidean geometry
Hyperbolic plane
Equidistant curves
description In the early years of mathematical training, students know certain facts and take them as unshakable truths. Gradually, some of these paradigms are broken, for example with the knowledge of structures such as complex numbers, where there is a number whose square is -1. With this, the students have contact with the flexibility of Mathematics, in what relates to the possibility of constructing new sets, usually extensions of the previous sets. This, however, does not reach Geometry. The patterns of formulas and formulas that are taught remain rigid in high school and even higher education, and even for a regular undergraduate Mathematics student, the information that parallel lines determine in a common transverse congruent alternating angles is considered as immutable. The purpose of this work is to present a non-Euclidean geometry developed throughout the 19th century and has as a target the teachers of Mathematics, to show them that, just as the order of factors can change the product, not always the sum of the angles of a triangle is equal to 180 degrees.
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2018-05-17T11:08:54Z
dc.date.available.fl_str_mv 2018-05-17T11:08:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CASTRO, Janio Kleo de Sousa. Algumas particularidades do plano hiperbólico. 2017. 50 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências , Universidade Federal do Ceará, Fortaleza, 2017
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/31951
identifier_str_mv CASTRO, Janio Kleo de Sousa. Algumas particularidades do plano hiperbólico. 2017. 50 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências , Universidade Federal do Ceará, Fortaleza, 2017
url http://www.repositorio.ufc.br/handle/riufc/31951
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/31951/5/2017_dis_jkscastro.pdf
http://repositorio.ufc.br/bitstream/riufc/31951/6/license.txt
bitstream.checksum.fl_str_mv a450c96d75df8370e4f39668d1127fce
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793235677675520