Caracterizações da esfera em formas espaciais
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/24227 |
Resumo: | In this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mⁿ e x: M → Qⁿ⁺¹c a isometric immersion, x(M) is a geodesic sphere in Qⁿ⁺¹c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qⁿ⁺¹c by the totally geodesic hypersurfaces (Qⁿc )p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation Δϕ = σ if, and only if, M is isometric to the n-sphere Sⁿ(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M → Qⁿ⁺¹, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr ≠ 0 and there are nonnegative constants C1, C2, ..., Cr-1 tais que Hr =∑ⁿ⁻¹(i=1) Ci Hi;; then x(M) is a geodesic sphere, where Qⁿ⁺¹ is Rⁿ⁺¹, Hⁿ⁺¹ or Sⁿ⁺¹+ . |
| id |
UFC-7_93023fa352bc6bd93ec74f2c1f12bd90 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/24227 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Pinto, Victor GomesColares, Antonio Gervasio2017-07-24T15:34:13Z2017-07-24T15:34:13Z2017-07-06PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/24227In this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mⁿ e x: M → Qⁿ⁺¹c a isometric immersion, x(M) is a geodesic sphere in Qⁿ⁺¹c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qⁿ⁺¹c by the totally geodesic hypersurfaces (Qⁿc )p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation Δϕ = σ if, and only if, M is isometric to the n-sphere Sⁿ(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M → Qⁿ⁺¹, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr ≠ 0 and there are nonnegative constants C1, C2, ..., Cr-1 tais que Hr =∑ⁿ⁻¹(i=1) Ci Hi;; then x(M) is a geodesic sphere, where Qⁿ⁺¹ is Rⁿ⁺¹, Hⁿ⁺¹ or Sⁿ⁺¹+ .Neste trabalho serão apresentadas três caracterizações da esfera. Primeiramente, será mostrado que dada uma hipersuperfície compacta e orientada Mⁿ e x: M → Qⁿ⁺¹c uma imersão isométrica, onde Qⁿ⁺¹c é uma forma espacial simplesmente conexa, isto é, uma variedade Riemanniana de curvatura seccional constante c, x(M) é uma esfera geodésica em Qⁿ⁺¹c se, e somente se, a (r + 1)-ésima curvatura média Hr+1 é uma constante não nula e o conjunto dos pontos que são omitidos em Qⁿ⁺¹c pelas hipersuperfícies totalmente geodésicas (Qⁿc)p tangentes a x(M) é não vazio. Como segundo resultado, seja uma hipersuperfície compacta, conexa e orientável M do espaço euclidiano Rⁿ⁺¹, com função suporte não negativa e integrando de Minkowski σ. Será provado que a função curvatura média α da hipersuperfície é solução da equação de Poisson Δϕ = σ se, e somente se, M é isométrica à n-esfera Sⁿ(c) de curvatura média c. Uma caracterização similar é provada para uma hipersuperfície com a curvatura escalar satisfazendo a mesma equação. Para o terceiro resultado é considerado uma imersão isométrica x: M → Qⁿ⁺¹, onde M é uma hipersuperfície compacta tal que x(M) é convexa, e será provado que, se alguma curvatura r-média é tal que Hr ≠ 0 e existem constantes não negativas C1, C2, ..., Cr-1 tais que Hr =∑ⁿ⁻¹(i=1) Ci Hi; então x(M) é uma esfera geodésica, onde Qⁿ⁺¹ é Rⁿ⁺¹, Hⁿ⁺¹ ou Sⁿ⁺¹+ .r-ésima curvatura médiaEquação de PoissonEsferas geodésicasHipersuperfíciesr-mean curvaturePoisson's equationGeodesic spheresHypersurfacesCaracterizações da esfera em formas espaciaisCharacterizations of the sphere in space forms.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2017_dis_vgpinto.pdf2017_dis_vgpinto.pdfapplication/pdf1184804http://repositorio.ufc.br/bitstream/riufc/24227/3/2017_dis_vgpinto.pdf357d2ee050e65edb2839093ba455b0dbMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/24227/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/242272023-08-07 15:41:24.537oai:repositorio.ufc.br:riufc/24227Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-08-07T18:41:24Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Caracterizações da esfera em formas espaciais |
| dc.title.en.pt_BR.fl_str_mv |
Characterizations of the sphere in space forms. |
| title |
Caracterizações da esfera em formas espaciais |
| spellingShingle |
Caracterizações da esfera em formas espaciais Pinto, Victor Gomes r-ésima curvatura média Equação de Poisson Esferas geodésicas Hipersuperfícies r-mean curvature Poisson's equation Geodesic spheres Hypersurfaces |
| title_short |
Caracterizações da esfera em formas espaciais |
| title_full |
Caracterizações da esfera em formas espaciais |
| title_fullStr |
Caracterizações da esfera em formas espaciais |
| title_full_unstemmed |
Caracterizações da esfera em formas espaciais |
| title_sort |
Caracterizações da esfera em formas espaciais |
| author |
Pinto, Victor Gomes |
| author_facet |
Pinto, Victor Gomes |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Pinto, Victor Gomes |
| dc.contributor.advisor1.fl_str_mv |
Colares, Antonio Gervasio |
| contributor_str_mv |
Colares, Antonio Gervasio |
| dc.subject.por.fl_str_mv |
r-ésima curvatura média Equação de Poisson Esferas geodésicas Hipersuperfícies r-mean curvature Poisson's equation Geodesic spheres Hypersurfaces |
| topic |
r-ésima curvatura média Equação de Poisson Esferas geodésicas Hipersuperfícies r-mean curvature Poisson's equation Geodesic spheres Hypersurfaces |
| description |
In this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mⁿ e x: M → Qⁿ⁺¹c a isometric immersion, x(M) is a geodesic sphere in Qⁿ⁺¹c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qⁿ⁺¹c by the totally geodesic hypersurfaces (Qⁿc )p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation Δϕ = σ if, and only if, M is isometric to the n-sphere Sⁿ(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M → Qⁿ⁺¹, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr ≠ 0 and there are nonnegative constants C1, C2, ..., Cr-1 tais que Hr =∑ⁿ⁻¹(i=1) Ci Hi;; then x(M) is a geodesic sphere, where Qⁿ⁺¹ is Rⁿ⁺¹, Hⁿ⁺¹ or Sⁿ⁺¹+ . |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-07-24T15:34:13Z |
| dc.date.available.fl_str_mv |
2017-07-24T15:34:13Z |
| dc.date.issued.fl_str_mv |
2017-07-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/24227 |
| identifier_str_mv |
PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. |
| url |
http://www.repositorio.ufc.br/handle/riufc/24227 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/24227/3/2017_dis_vgpinto.pdf http://repositorio.ufc.br/bitstream/riufc/24227/4/license.txt |
| bitstream.checksum.fl_str_mv |
357d2ee050e65edb2839093ba455b0db 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793319877279744 |