IoT service placement with load distribution and service migration in edge computing for 5G networks

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Maia, Adyson Magalhães
Orientador(a): Castro, Miguel Franklin de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/60427
Resumo: Edge Computing (EC) is a promising concept to alleviate some of the cloud computing limitations in supporting Internet of Things (IoT) applications, especially time-sensitive applications, by bringing computing resources closer to end users, at the network edges. As promising as EC is, it also faces many challenges. These are mainly related to the resource management in the vast, distributed, dynamic, and heterogeneous setting brought by EC. A relevant issue for resource management is the service placement problem, which is the decision-making process of determining where to place different applications or services over the EC infrastructure according to some constraints, requirements, and performance goals. This decision-making process can thus be extended to include other related issues, such as load distribution and service migration. In this thesis, we investigate the IoT services placement with load distribution and service migration in the context of next generation networks with EC capabilities, such as the fifth-generation (5G) mobile system. First, we address service placement with load distribution as single and multi-objective problems and we the proposal to solve these using a well-chosen genetic algorithm. Analytical results show that through our proposed formulation and the associated proposed algorithms, we are able to outperform other benchmark algorithms in terms of multiple conflicting objectives, such as response deadline violation, operational cost, and service availability. Then, in order to handle load fluctuations, we propose a centralized limited look-ahead prediction control that periodically readjusts service placement and load distribution decisions by taking into account the performance-cost trade-off of service migrations. Evaluation results show that our predictive control has even better system performance regarding response deadline violations with a small additional migration cost compared to benchmark algorithms. Finally, we address the scalability issue faced by centralized decision-making process by designing a hierarchical distributed service placement solution. The evaluation of our distributed control indicates that the trade-off between the system performance and the scalability of decision-making depends on how the control decision problem is decomposed.
id UFC-7_9338ed1fffb85f85be208ceef5331723
oai_identifier_str oai:repositorio.ufc.br:riufc/60427
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Maia, Adyson MagalhãesGhamri-Doudane, YacineConceição, Dário VieiraCastro, Miguel Franklin de2021-09-13T15:55:44Z2021-09-13T15:55:44Z2021MAIA, Adyson Magalhães. IoT service placement with load distribution and service migration in edge computing for 5G networks. 2021. 175 f. Tese (Doutorado em Ciência da Computação) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/60427Edge Computing (EC) is a promising concept to alleviate some of the cloud computing limitations in supporting Internet of Things (IoT) applications, especially time-sensitive applications, by bringing computing resources closer to end users, at the network edges. As promising as EC is, it also faces many challenges. These are mainly related to the resource management in the vast, distributed, dynamic, and heterogeneous setting brought by EC. A relevant issue for resource management is the service placement problem, which is the decision-making process of determining where to place different applications or services over the EC infrastructure according to some constraints, requirements, and performance goals. This decision-making process can thus be extended to include other related issues, such as load distribution and service migration. In this thesis, we investigate the IoT services placement with load distribution and service migration in the context of next generation networks with EC capabilities, such as the fifth-generation (5G) mobile system. First, we address service placement with load distribution as single and multi-objective problems and we the proposal to solve these using a well-chosen genetic algorithm. Analytical results show that through our proposed formulation and the associated proposed algorithms, we are able to outperform other benchmark algorithms in terms of multiple conflicting objectives, such as response deadline violation, operational cost, and service availability. Then, in order to handle load fluctuations, we propose a centralized limited look-ahead prediction control that periodically readjusts service placement and load distribution decisions by taking into account the performance-cost trade-off of service migrations. Evaluation results show that our predictive control has even better system performance regarding response deadline violations with a small additional migration cost compared to benchmark algorithms. Finally, we address the scalability issue faced by centralized decision-making process by designing a hierarchical distributed service placement solution. The evaluation of our distributed control indicates that the trade-off between the system performance and the scalability of decision-making depends on how the control decision problem is decomposed.Edge Computing (EC) é um conceito promissor para mitigar algumas das limitações da computação em nuvem no suporte às aplicações da Internet das Coisas (Internet of Things - IoT), especialmente às aplicações sensíveis ao tempo, ao trazer recursos computacionais para a proximidade dos usuários finais nas bordas da rede. Por mais promissor que a EC seja, este conceito também enfrenta muitos desafios. Estes desafios estão principalmente relacionados à gestão de recursos em ambiente vasto, distribuído, dinâmico e heterogêneo trazido pela EC. Uma questão relevante para o gerenciamento de recursos é o problema de colocação de serviço, que é o processo de tomada de decisão para determinar onde colocar diferentes aplicações ou serviços na infraestrutura da EC de acordo com algumas restrições, requisitos e metas de desempenho. Este processo de tomada de decisão pode ser estendido para incluir outras questões relacionadas, como a distribuição de carga e a migração de serviço. Esta tese investiga a colocação de serviços IoT com distribuição de cargas e migração de serviços no contexto das redes de próxima geração com suporte à EC, tal como a rede móvel de quinta geração (5G). Primeiramente, esta tese aborda a colocação de serviços com distribuição de carga como problemas mono-objetivo e multiobjetivo e propõe resolvê-los usando algoritmo genético. Os resultados analíticos mostram que, por meio de nossa formulação e dos algoritmos propostos associados, é possível superar outros algoritmos de benchmark em termos de múltiplos objetivos conflitantes, tais como a violação de prazo de resposta, o custo operacional e a disponibilidade de serviço. Em seguida, para lidar com as flutuações de carga, é proposto um controle centralizado e preditivo que reajusta periodicamente as decisões de colocação de serviço e distribuição de carga de acordo com a relação custo-benefício das migrações de serviço. Os resultados da avaliação mostram que o controle preditivo proposto tem um desempenho de sistema ainda melhor em relação às violações do prazo de resposta e um pequeno custo de migração adicional em comparação com os algoritmos de benchmark. Finalmente, é tratado o problema de escalabilidade enfrentado por um processo de tomada de decisão centralizado ao projetar uma solução hierárquica e distribuída da colocação de serviços. A avaliação do controle distribuído proposto indica que a compensação entre o desempenho do sistema e a escalabilidade da tomada de decisões depende de como o problema de decisão é decomposto.L’Edge Computing (EC) est un concept prometteur pour atténuer certaines des limitations du cloud computing dans la prise en charge des applications Internet des Objets (Internet of Things - IoT), en particulier les applications sensibles au délai, en rapprochant les ressources informatiques des utilisateurs à la périphérie du réseau. Aussi prometteur que soit l’EC, ce concept est également confronté à de nombreux défis. Ceux-ci sont principalement liés à la gestion des ressources dans ce cadre étendu, distribué, dynamique et hétérogène qu’apporte l’EC. Un des problèmes majeurs pour cette gestion des ressources est le problème du placement des services ou applications. Ce problème peut ainsi être étendu pour inclure d’autres aspects connexes, tels que la répartition de la charge et la migration de service. Dans cette thèse, nous étudions le placement des services IoT avec distribution de charge et migration de services dans le contexte de réseaux de nouvelle génération dotés de capacités EC, tels que le système mobile de cinquième génération (5G). Premièrement, nous abordons le placement de services avec la distribution de charge comme un problème mono-objectif, puis un problème multi-objectifs. Nous proposons alors de les résoudre en utilisant un algorithme génétique spécifique. Les résultats analytiques montrent que grâce à notre formulation et aux algorithmes proposés, nous sommes en mesure de suppléer les autres algorithmes de référence en termes lorsque nous considérons des objectifs multiples et contradictoires, comme la violation du délai de réponse, le coût opérationnel et la disponibilité du service. Afin de gérer les fluctuations de charge, nous proposons ensuite un contrôle centralisé et prédictif qui réajuste périodiquement les décisions de placement de services et de distribution de charge en tenant compte du compromis performance-coût lié aux migrations de services. Les résultats de l’évaluation montrent que notre contrôle prédictif offre des performances du système encore meilleures en ce qui concerne les violations de délai mais au prix d’une légère augmentation du coût liée à la migration. Enfin, nous abordons le problème d’extensibilité auquel est confrontée toute prise de décision centralisée en concevant une solution hiérarchique et distribuée pour le placement de services. L’évaluation de notre contrôle distribué indique que le compromis entre les performances du système et l’extensibilité de la prise de décision dépend de la façon dont le problème de décision de contrôle est décomposé.Service placementLoad distributionService migrationInternet of thingsEdge computing5G networkIoT service placement with load distribution and service migration in edge computing for 5G networksIoT service placement with load distribution and service migration in edge computing for 5G networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_tese_ammaia.pdf2021_tese_ammaia.pdfapplication/pdf4147689http://repositorio.ufc.br/bitstream/riufc/60427/3/2021_tese_ammaia.pdf8f420b3d6054ca9d1fedc669350ae2f7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/60427/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/604272021-09-13 12:55:44.634oai:repositorio.ufc.br:riufc/60427Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-09-13T15:55:44Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv IoT service placement with load distribution and service migration in edge computing for 5G networks
dc.title.en.pt_BR.fl_str_mv IoT service placement with load distribution and service migration in edge computing for 5G networks
title IoT service placement with load distribution and service migration in edge computing for 5G networks
spellingShingle IoT service placement with load distribution and service migration in edge computing for 5G networks
Maia, Adyson Magalhães
Service placement
Load distribution
Service migration
Internet of things
Edge computing
5G network
title_short IoT service placement with load distribution and service migration in edge computing for 5G networks
title_full IoT service placement with load distribution and service migration in edge computing for 5G networks
title_fullStr IoT service placement with load distribution and service migration in edge computing for 5G networks
title_full_unstemmed IoT service placement with load distribution and service migration in edge computing for 5G networks
title_sort IoT service placement with load distribution and service migration in edge computing for 5G networks
author Maia, Adyson Magalhães
author_facet Maia, Adyson Magalhães
author_role author
dc.contributor.co-advisor.none.fl_str_mv Ghamri-Doudane, Yacine
Conceição, Dário Vieira
dc.contributor.author.fl_str_mv Maia, Adyson Magalhães
dc.contributor.advisor1.fl_str_mv Castro, Miguel Franklin de
contributor_str_mv Castro, Miguel Franklin de
dc.subject.por.fl_str_mv Service placement
Load distribution
Service migration
Internet of things
Edge computing
5G network
topic Service placement
Load distribution
Service migration
Internet of things
Edge computing
5G network
description Edge Computing (EC) is a promising concept to alleviate some of the cloud computing limitations in supporting Internet of Things (IoT) applications, especially time-sensitive applications, by bringing computing resources closer to end users, at the network edges. As promising as EC is, it also faces many challenges. These are mainly related to the resource management in the vast, distributed, dynamic, and heterogeneous setting brought by EC. A relevant issue for resource management is the service placement problem, which is the decision-making process of determining where to place different applications or services over the EC infrastructure according to some constraints, requirements, and performance goals. This decision-making process can thus be extended to include other related issues, such as load distribution and service migration. In this thesis, we investigate the IoT services placement with load distribution and service migration in the context of next generation networks with EC capabilities, such as the fifth-generation (5G) mobile system. First, we address service placement with load distribution as single and multi-objective problems and we the proposal to solve these using a well-chosen genetic algorithm. Analytical results show that through our proposed formulation and the associated proposed algorithms, we are able to outperform other benchmark algorithms in terms of multiple conflicting objectives, such as response deadline violation, operational cost, and service availability. Then, in order to handle load fluctuations, we propose a centralized limited look-ahead prediction control that periodically readjusts service placement and load distribution decisions by taking into account the performance-cost trade-off of service migrations. Evaluation results show that our predictive control has even better system performance regarding response deadline violations with a small additional migration cost compared to benchmark algorithms. Finally, we address the scalability issue faced by centralized decision-making process by designing a hierarchical distributed service placement solution. The evaluation of our distributed control indicates that the trade-off between the system performance and the scalability of decision-making depends on how the control decision problem is decomposed.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-09-13T15:55:44Z
dc.date.available.fl_str_mv 2021-09-13T15:55:44Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MAIA, Adyson Magalhães. IoT service placement with load distribution and service migration in edge computing for 5G networks. 2021. 175 f. Tese (Doutorado em Ciência da Computação) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/60427
identifier_str_mv MAIA, Adyson Magalhães. IoT service placement with load distribution and service migration in edge computing for 5G networks. 2021. 175 f. Tese (Doutorado em Ciência da Computação) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/60427
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/60427/3/2021_tese_ammaia.pdf
http://repositorio.ufc.br/bitstream/riufc/60427/4/license.txt
bitstream.checksum.fl_str_mv 8f420b3d6054ca9d1fedc669350ae2f7
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793287298023424