Um Sistema de visão computacional para classificação da qualidade do couro caprino

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Santos Filho, Edmilson Queiroz dos
Orientador(a): Barreto, Guilherme de Alencar
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/10849
Resumo: An important economic alternative for the semi-arid region of Brazil is the goat/sheep farming. Besides milk and meat, goat/sheep skins are much appreciated in the manufacturing of fine artifacts (e.g. shoes, bags & purses, wall ets, and jackets). However, due to the extensive mode of raising/breeding and the informality of slaughtering, sheep/goat farmers deliver to industry skin pieces with different types and levels of defects. Then, at the industry, specialized workers have to classify/discriminate the skin pieces according to their qualities. This handmade work is time - consuming and extremely dependent on the experience of the employee in charge of the skin - quality discrimination. Even the same employee may produce different classifications if he/she is asked to reclassify the skin lot. Thus, in order to handle these problems, in this paper we report the first results of a computer vision based system aiming at classifying automatically the quality of goat/sheep skin pieces. For this purpose, we compare the performances of statistica l and neural network classifiers using several feature extraction techniques, such as Column - Variance (VAR), Haar wavelet transform (HAAR), Non - Negative Matrix Factorization (NMF), Principal Component Analysis (PCA) and Gray Level Co - occurence Matrices (GL CM). We also implemented the reject option in the evaluated classifiers. Reject option is a technique used do improve classifier's reliability in decision support systems. It consists in withholding the automatic classification of an item, if the decision is considered not sufficiently reliable. The rejected item is then handled by a different classifier or by a human expert. By means of an in - depth analysis of the results, it was possible to observe that, without the reject option mechanism, the VAR, NMF a nd HAAR techniques achieved the best performances when associated with the ELM and SVM classifiers. When the reject option mechanism was present, it was observed a considerable improvement of the classification rates, at the expenses of relatively high rej ection rates. It was also possible to observe that, for the evaluated classifiers, the HAAR and GLCM techniques were less affected by the use of the reject option mechanism in comparison to the results achieved for the case without reject option
id UFC-7_9784cee4a255bd4af9e01d88146b7b25
oai_identifier_str oai:repositorio.ufc.br:riufc/10849
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Santos Filho, Edmilson Queiroz dosBarreto, Guilherme de Alencar2015-03-04T16:51:14Z2015-03-04T16:51:14Z2013SANTOS FILHO. E. Q. Um Sistema de visão computacional para classificação da qualidade do couro caprino. 2013. 85 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2013.http://www.repositorio.ufc.br/handle/riufc/10849An important economic alternative for the semi-arid region of Brazil is the goat/sheep farming. Besides milk and meat, goat/sheep skins are much appreciated in the manufacturing of fine artifacts (e.g. shoes, bags & purses, wall ets, and jackets). However, due to the extensive mode of raising/breeding and the informality of slaughtering, sheep/goat farmers deliver to industry skin pieces with different types and levels of defects. Then, at the industry, specialized workers have to classify/discriminate the skin pieces according to their qualities. This handmade work is time - consuming and extremely dependent on the experience of the employee in charge of the skin - quality discrimination. Even the same employee may produce different classifications if he/she is asked to reclassify the skin lot. Thus, in order to handle these problems, in this paper we report the first results of a computer vision based system aiming at classifying automatically the quality of goat/sheep skin pieces. For this purpose, we compare the performances of statistica l and neural network classifiers using several feature extraction techniques, such as Column - Variance (VAR), Haar wavelet transform (HAAR), Non - Negative Matrix Factorization (NMF), Principal Component Analysis (PCA) and Gray Level Co - occurence Matrices (GL CM). We also implemented the reject option in the evaluated classifiers. Reject option is a technique used do improve classifier's reliability in decision support systems. It consists in withholding the automatic classification of an item, if the decision is considered not sufficiently reliable. The rejected item is then handled by a different classifier or by a human expert. By means of an in - depth analysis of the results, it was possible to observe that, without the reject option mechanism, the VAR, NMF a nd HAAR techniques achieved the best performances when associated with the ELM and SVM classifiers. When the reject option mechanism was present, it was observed a considerable improvement of the classification rates, at the expenses of relatively high rej ection rates. It was also possible to observe that, for the evaluated classifiers, the HAAR and GLCM techniques were less affected by the use of the reject option mechanism in comparison to the results achieved for the case without reject optionUma alternativa econômica importante para a região semi-árida do Brasil é a criação de ovinos e caprinos. Além de leite e carne de caprinos/ovinos, as peles são muito apreciadas na fabricação de artefatos finos (por exemplo, sapatos, bolsas, carteiras e casacos). No entanto, devido ao modo extensivo de criação/reprodução e informalidade do abate, as peles de ovinos/caprinos são entregues ao curtume com diferentes tipos e níveis de defeitos. Na indústria, trabalhadores especializados têm a tarefa de classificar/discriminar as peles de acordo com a qualidade das mesmas. Este trabalho é artesanal, demorado e extremamente dependente da experiência do funcionário responsável pela discriminação da qualidade da pele. O mesmo funcionário pode produzir diferentes classificações se ele/ela tiver que reclassificar o lote de pele. Assim, a fim de lidar com esses problemas, neste trabalho, apresentam-se os primeiros resultados de um sistema baseado em visão computacional cujo objetivo é classificar automaticamente a qualidade da pele de caprinos/ovinos. Para isso, comparamos os desempenhos de classificadores estatísticos e neurais utilizando diversas técnicas de extração de características, tais como a Variância das colunas (VAR), Transformada Wavelet de Haar (HAAR), Fatoração em Matrizes Não-Negativas (NMF), Análise de Componentes Principais (PCA) e Matrizes de Co-ocorrência de níveis de cinza (GLCM). Também foram implementados mecanismos de opção de rejeição nos classificadores avaliados. Opção de rejeição é uma técnica usada para aumentar a confiabilidade do classificador em sistemas de apoio à tomada de decisão, que consiste em reter a classificação automática de um item, caso a decisão não seja considerada suficientemente confiável. Já com a utilização da opção de rejeição, de uma forma geral, foi possível observar uma considerável melhora nas taxas de acerto dos classificadores avaliados, às expensas de uma taxa de rejeição relativamente alta. Também foi possível observar que, para os classificadores analisados, os extratores HAAR e GLCM foram menos sensíveis à aplicação da opção de rejeição, em comparação com os resultados obtidos para o caso sem opção de rejeição.TeleinformáticaReconhecimento de padrõesRedes neurais (Computação)Um Sistema de visão computacional para classificação da qualidade do couro caprinoA Computer vision system for classification of quality goat leatherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2013_dis_eqsantosfilho.pdf2013_dis_eqsantosfilho.pdfapplication/pdf4685351http://repositorio.ufc.br/bitstream/riufc/10849/1/2013_dis_eqsantosfilho.pdf54b73c3fbf463604705094bd650b2cddMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/10849/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/108492021-06-29 11:21:52.73oai:repositorio.ufc.br:riufc/10849w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-06-29T14:21:52Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Um Sistema de visão computacional para classificação da qualidade do couro caprino
dc.title.en.pt_BR.fl_str_mv A Computer vision system for classification of quality goat leather
title Um Sistema de visão computacional para classificação da qualidade do couro caprino
spellingShingle Um Sistema de visão computacional para classificação da qualidade do couro caprino
Santos Filho, Edmilson Queiroz dos
Teleinformática
Reconhecimento de padrões
Redes neurais (Computação)
title_short Um Sistema de visão computacional para classificação da qualidade do couro caprino
title_full Um Sistema de visão computacional para classificação da qualidade do couro caprino
title_fullStr Um Sistema de visão computacional para classificação da qualidade do couro caprino
title_full_unstemmed Um Sistema de visão computacional para classificação da qualidade do couro caprino
title_sort Um Sistema de visão computacional para classificação da qualidade do couro caprino
author Santos Filho, Edmilson Queiroz dos
author_facet Santos Filho, Edmilson Queiroz dos
author_role author
dc.contributor.author.fl_str_mv Santos Filho, Edmilson Queiroz dos
dc.contributor.advisor1.fl_str_mv Barreto, Guilherme de Alencar
contributor_str_mv Barreto, Guilherme de Alencar
dc.subject.por.fl_str_mv Teleinformática
Reconhecimento de padrões
Redes neurais (Computação)
topic Teleinformática
Reconhecimento de padrões
Redes neurais (Computação)
description An important economic alternative for the semi-arid region of Brazil is the goat/sheep farming. Besides milk and meat, goat/sheep skins are much appreciated in the manufacturing of fine artifacts (e.g. shoes, bags & purses, wall ets, and jackets). However, due to the extensive mode of raising/breeding and the informality of slaughtering, sheep/goat farmers deliver to industry skin pieces with different types and levels of defects. Then, at the industry, specialized workers have to classify/discriminate the skin pieces according to their qualities. This handmade work is time - consuming and extremely dependent on the experience of the employee in charge of the skin - quality discrimination. Even the same employee may produce different classifications if he/she is asked to reclassify the skin lot. Thus, in order to handle these problems, in this paper we report the first results of a computer vision based system aiming at classifying automatically the quality of goat/sheep skin pieces. For this purpose, we compare the performances of statistica l and neural network classifiers using several feature extraction techniques, such as Column - Variance (VAR), Haar wavelet transform (HAAR), Non - Negative Matrix Factorization (NMF), Principal Component Analysis (PCA) and Gray Level Co - occurence Matrices (GL CM). We also implemented the reject option in the evaluated classifiers. Reject option is a technique used do improve classifier's reliability in decision support systems. It consists in withholding the automatic classification of an item, if the decision is considered not sufficiently reliable. The rejected item is then handled by a different classifier or by a human expert. By means of an in - depth analysis of the results, it was possible to observe that, without the reject option mechanism, the VAR, NMF a nd HAAR techniques achieved the best performances when associated with the ELM and SVM classifiers. When the reject option mechanism was present, it was observed a considerable improvement of the classification rates, at the expenses of relatively high rej ection rates. It was also possible to observe that, for the evaluated classifiers, the HAAR and GLCM techniques were less affected by the use of the reject option mechanism in comparison to the results achieved for the case without reject option
publishDate 2013
dc.date.issued.fl_str_mv 2013
dc.date.accessioned.fl_str_mv 2015-03-04T16:51:14Z
dc.date.available.fl_str_mv 2015-03-04T16:51:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS FILHO. E. Q. Um Sistema de visão computacional para classificação da qualidade do couro caprino. 2013. 85 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2013.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/10849
identifier_str_mv SANTOS FILHO. E. Q. Um Sistema de visão computacional para classificação da qualidade do couro caprino. 2013. 85 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2013.
url http://www.repositorio.ufc.br/handle/riufc/10849
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/10849/1/2013_dis_eqsantosfilho.pdf
http://repositorio.ufc.br/bitstream/riufc/10849/2/license.txt
bitstream.checksum.fl_str_mv 54b73c3fbf463604705094bd650b2cdd
8c4401d3d14722a7ca2d07c782a1aab3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793357422592000