IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Vasconcelos Filho, Carlos Alfredo Cordeiro de
Orientador(a): Albuquerque, Victor Hugo Costa de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/78756
Resumo: X-ray images are widely used in the medical field due to their low cost and non-invasive nature, but they suffer from noise problems related to equipment or environmental factors. There are multiple solutions in the literature to combat this problem, with the main one being the use of non-learning image processing algorithms for X-ray image enhancement. In other areas of application, such as low-light and underwater images, there is an extensive use of artificial intelligence models for image enhancement tasks, but the training of artificial intelligence models for medical image enhancement encounters significant challenges. In supervised learning, obtaining a dataset with authentic noisy images and their manually enhanced counterparts as labels is imperative. When dealing with medical images it can be difficult to have access to high-quality/low-quality pairs because of the restrictive context where these images are taken. To deal with this problem, this paper introduces an innovative approach to unsupervised learning for chest x-ray image enhancement. The suggested approach begins with the pre-training of a model using multiple image enhancement algorithms as reference to establish an initial set of solutions. Following this, an evolutionary algorithm is employed to refine these initial solutions. It incorporates two image enhancement metrics, Entropy and the Natural Image Quality Evaluator(NIQE), along with Structural Similarity Index as fitness indicators. We tested our method in a Chest X-ray dataset and our findings demonstrate that our method achieved a better NIQE, 4.05 compared to 4.24, and a faster processing time, 2.95 milliseconds compared to 0.195 seconds, in relation to the state-of-the-art algorithm with the best NIQE and entropy. We showed that our algorithm outperforms state-of-the-art algorithms in NIQE and processing time.
id UFC-7_98a1817562000882cbf61dcfc31ced9a
oai_identifier_str oai:repositorio.ufc.br:riufc/78756
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Vasconcelos Filho, Carlos Alfredo Cordeiro deCortez, Paulo CesarAlbuquerque, Victor Hugo Costa de2024-11-06T12:36:11Z2024-11-06T12:36:11Z2024-07-11VASCONCELOS FILHO, Carlos Alfredo de. IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans. 2024. 78 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/78756X-ray images are widely used in the medical field due to their low cost and non-invasive nature, but they suffer from noise problems related to equipment or environmental factors. There are multiple solutions in the literature to combat this problem, with the main one being the use of non-learning image processing algorithms for X-ray image enhancement. In other areas of application, such as low-light and underwater images, there is an extensive use of artificial intelligence models for image enhancement tasks, but the training of artificial intelligence models for medical image enhancement encounters significant challenges. In supervised learning, obtaining a dataset with authentic noisy images and their manually enhanced counterparts as labels is imperative. When dealing with medical images it can be difficult to have access to high-quality/low-quality pairs because of the restrictive context where these images are taken. To deal with this problem, this paper introduces an innovative approach to unsupervised learning for chest x-ray image enhancement. The suggested approach begins with the pre-training of a model using multiple image enhancement algorithms as reference to establish an initial set of solutions. Following this, an evolutionary algorithm is employed to refine these initial solutions. It incorporates two image enhancement metrics, Entropy and the Natural Image Quality Evaluator(NIQE), along with Structural Similarity Index as fitness indicators. We tested our method in a Chest X-ray dataset and our findings demonstrate that our method achieved a better NIQE, 4.05 compared to 4.24, and a faster processing time, 2.95 milliseconds compared to 0.195 seconds, in relation to the state-of-the-art algorithm with the best NIQE and entropy. We showed that our algorithm outperforms state-of-the-art algorithms in NIQE and processing time.As imagens de raio-X são amplamente utilizadas no campo médico devido ao seu baixo custo e natureza não invasiva, mas sofrem de problemas de ruído relacionados ao equipamento ou a fatores ambientais. Existem várias soluções na literatura para combater esse problema, sendo a principal o uso de algoritmos de processamento de imagem sem aprendizado para o aprimoramento de imagens de raio-X. Em outras áreas de aplicação, como imagens com pouca luz e subaquáticas, há um amplo uso de modelos de inteligência artificial para tarefas de aprimoramento de imagem, mas o treinamento de modelos de inteligência artificial para o aprimoramento de imagens médicas enfrenta desafios significativos. No aprendizado supervisionado, a obtenção de um conjunto de dados com imagens ruidosas e suas contrapartes aprimoradas é imperativa. Ao lidar com imagens médicas, pode ser difícil ter acesso a pares de alta qualidade/baixa qualidade devido ao contexto restritivo em que essas imagens são capturadas. Para lidar com esse problema, este artigo apresenta um algoritmo inovador de aprendizado não supervisionado para o aprimoramento de imagens de raio-X de tórax. A abordagem sugerida começa com o pré-treinamento de um modelo usando vários algoritmos de aprimoramento de imagem como referência para estabelecer um conjunto inicial de soluções. Em seguida, um algoritmo evolutivo é empregado para refinar essas soluções iniciais. Esse algoritmo incorpora duas métricas de aprimoramento de imagem, Entropia e o Natural Image Quality Evaluator(NIQE), juntamente com o Índice de Similaridade Estrutural como indicadores de aptidão. Nosso método foi testado em um conjunto de dados de Raio-X de tórax e nossos resultados demonstram que nossa abordagem alcançou uma pontuação NIQE melhor de 4.05 em comparação com 4.24, e um tempo de processamento mais rápido de 2.95 milissegundos em comparação com 0.195 segundos, em relação ao algoritmo estado-da-arte com as melhores pontuações de NIQE e entropia. Mostramos que nosso algoritmo supera os algoritmos estado-da-arte em termos de pontuação NIQE e tempo de processamento.IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray ScansIQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scansinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAprimoramento de imagensRede neural convolucionalAprendizado não supervisionadoAlgoritmo genéticoRaio-xImagem médicaImage enhancementConvolutional Neural NetworkUnsupervised learningEvolutionary algorithmsX-rayMedical imageCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/7346075215581116https://orcid.org/0000-0003-3886-4309http://lattes.cnpq.br/4186515742605446https://orcid.org/0000-0002-4020-3019http://lattes.cnpq.br/50246021523040642024-07-15ORIGINAL2024_dis_cacvasconcelosfilho.pdf2024_dis_cacvasconcelosfilho.pdfapplication/pdf2337459http://repositorio.ufc.br/bitstream/riufc/78756/3/2024_dis_cacvasconcelosfilho.pdfb0d85e5b96069b3324340d3d1c40b230MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/78756/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/787562024-11-06 14:15:56.111oai:repositorio.ufc.br:riufc/78756Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-11-06T17:15:56Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
dc.title.en.pt_BR.fl_str_mv IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
title IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
spellingShingle IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
Vasconcelos Filho, Carlos Alfredo Cordeiro de
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Aprimoramento de imagens
Rede neural convolucional
Aprendizado não supervisionado
Algoritmo genético
Raio-x
Imagem médica
Image enhancement
Convolutional Neural Network
Unsupervised learning
Evolutionary algorithms
X-ray
Medical image
title_short IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
title_full IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
title_fullStr IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
title_full_unstemmed IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
title_sort IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans
author Vasconcelos Filho, Carlos Alfredo Cordeiro de
author_facet Vasconcelos Filho, Carlos Alfredo Cordeiro de
author_role author
dc.contributor.co-advisor.none.fl_str_mv Cortez, Paulo Cesar
dc.contributor.author.fl_str_mv Vasconcelos Filho, Carlos Alfredo Cordeiro de
dc.contributor.advisor1.fl_str_mv Albuquerque, Victor Hugo Costa de
contributor_str_mv Albuquerque, Victor Hugo Costa de
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Aprimoramento de imagens
Rede neural convolucional
Aprendizado não supervisionado
Algoritmo genético
Raio-x
Imagem médica
Image enhancement
Convolutional Neural Network
Unsupervised learning
Evolutionary algorithms
X-ray
Medical image
dc.subject.ptbr.pt_BR.fl_str_mv Aprimoramento de imagens
Rede neural convolucional
Aprendizado não supervisionado
Algoritmo genético
Raio-x
Imagem médica
dc.subject.en.pt_BR.fl_str_mv Image enhancement
Convolutional Neural Network
Unsupervised learning
Evolutionary algorithms
X-ray
Medical image
description X-ray images are widely used in the medical field due to their low cost and non-invasive nature, but they suffer from noise problems related to equipment or environmental factors. There are multiple solutions in the literature to combat this problem, with the main one being the use of non-learning image processing algorithms for X-ray image enhancement. In other areas of application, such as low-light and underwater images, there is an extensive use of artificial intelligence models for image enhancement tasks, but the training of artificial intelligence models for medical image enhancement encounters significant challenges. In supervised learning, obtaining a dataset with authentic noisy images and their manually enhanced counterparts as labels is imperative. When dealing with medical images it can be difficult to have access to high-quality/low-quality pairs because of the restrictive context where these images are taken. To deal with this problem, this paper introduces an innovative approach to unsupervised learning for chest x-ray image enhancement. The suggested approach begins with the pre-training of a model using multiple image enhancement algorithms as reference to establish an initial set of solutions. Following this, an evolutionary algorithm is employed to refine these initial solutions. It incorporates two image enhancement metrics, Entropy and the Natural Image Quality Evaluator(NIQE), along with Structural Similarity Index as fitness indicators. We tested our method in a Chest X-ray dataset and our findings demonstrate that our method achieved a better NIQE, 4.05 compared to 4.24, and a faster processing time, 2.95 milliseconds compared to 0.195 seconds, in relation to the state-of-the-art algorithm with the best NIQE and entropy. We showed that our algorithm outperforms state-of-the-art algorithms in NIQE and processing time.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-11-06T12:36:11Z
dc.date.available.fl_str_mv 2024-11-06T12:36:11Z
dc.date.issued.fl_str_mv 2024-07-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VASCONCELOS FILHO, Carlos Alfredo de. IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans. 2024. 78 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/78756
identifier_str_mv VASCONCELOS FILHO, Carlos Alfredo de. IQAEvolNet: A Novel Unsupervised Evolutionary Image Enhancement Algorithm on Chest X-Ray Scans. 2024. 78 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024.
url http://repositorio.ufc.br/handle/riufc/78756
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/78756/3/2024_dis_cacvasconcelosfilho.pdf
http://repositorio.ufc.br/bitstream/riufc/78756/2/license.txt
bitstream.checksum.fl_str_mv b0d85e5b96069b3324340d3d1c40b230
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793079632789504