Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Pinto, Marcos Rodrigues
Orientador(a): Martins, Eduardo Sávio Passos Rodrigues
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/16850
Resumo: Through the last three decades the evolutionary algorithms have been successful on application to many areas. Easily applied, efficiency and confidence are the main advantages of the evolutionary algorithms. In the groundwater remediation, generally, the objectives are the cost minimization, minimization of contaminant presence, maximization of pumping efficiency, among others. These objectives are naturally in conflicting and the search for optimal solutions, or almost optimal solutions are needed. In view of that, the evolutionary optimization methods have been applied and refined in order to search these solutions. A brief description of these methods is presented, referring to their advantages and limitations. Five mathematical functions are used to measure the algorithms performance and allow a comparison between them. In order to optimize a “pump-and-treat” system in the remediation of a hypothetical site, multi-population evolutionary algorithms are used, considering the problem multi-objective dimension. The multi-population approach has been applied as mitigate for the main evolutionary optimization drawback: the excessive computational time. The groundwater flow modeler MODFLOW (modular finite-difference flow model) is used with the contaminant transport simulator MT3DMS (modular three-dimensional multispecies transport model). Two multi-population algorithms are presented: MINPGA (Multi-Island Niched Pareto Genetic Algorithm), that is a NPGA (Niched Pareto Genetic Algorithm) multi-population version with the injection island approach; MHBMO (Multi-Hive Honey Bee Mating Optimization), that is a HBMO (Honey Bee Mating Optimization) multi-population version. A PSO (Particle Swarm Optimization) multi-population version, called MCPSO (Multi-Swarm Cooperative Particle Swarm Optimization) is too used. Tests with mathematical functions validate the presented algorithms. Remediation problem using the “pumping-and-treat” technique had as objectives the minimization of remediation cost and minimization of contaminant final plume. The results were shown to be very good for all algorithms, but MINPGA had a tenuous advantage over others
id UFC-7_9eaf3dfe25e52f2d7c7da9b434c06475
oai_identifier_str oai:repositorio.ufc.br:riufc/16850
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Pinto, Marcos RodriguesMartins, Eduardo Sávio Passos Rodrigues2016-05-17T18:06:39Z2016-05-17T18:06:39Z2009PINTO, M. R. Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas. 2009. 143 f. Dissertação (Mestrado em Engenharia Civil: Recursos Hídricos)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2009.http://www.repositorio.ufc.br/handle/riufc/16850Through the last three decades the evolutionary algorithms have been successful on application to many areas. Easily applied, efficiency and confidence are the main advantages of the evolutionary algorithms. In the groundwater remediation, generally, the objectives are the cost minimization, minimization of contaminant presence, maximization of pumping efficiency, among others. These objectives are naturally in conflicting and the search for optimal solutions, or almost optimal solutions are needed. In view of that, the evolutionary optimization methods have been applied and refined in order to search these solutions. A brief description of these methods is presented, referring to their advantages and limitations. Five mathematical functions are used to measure the algorithms performance and allow a comparison between them. In order to optimize a “pump-and-treat” system in the remediation of a hypothetical site, multi-population evolutionary algorithms are used, considering the problem multi-objective dimension. The multi-population approach has been applied as mitigate for the main evolutionary optimization drawback: the excessive computational time. The groundwater flow modeler MODFLOW (modular finite-difference flow model) is used with the contaminant transport simulator MT3DMS (modular three-dimensional multispecies transport model). Two multi-population algorithms are presented: MINPGA (Multi-Island Niched Pareto Genetic Algorithm), that is a NPGA (Niched Pareto Genetic Algorithm) multi-population version with the injection island approach; MHBMO (Multi-Hive Honey Bee Mating Optimization), that is a HBMO (Honey Bee Mating Optimization) multi-population version. A PSO (Particle Swarm Optimization) multi-population version, called MCPSO (Multi-Swarm Cooperative Particle Swarm Optimization) is too used. Tests with mathematical functions validate the presented algorithms. Remediation problem using the “pumping-and-treat” technique had as objectives the minimization of remediation cost and minimization of contaminant final plume. The results were shown to be very good for all algorithms, but MINPGA had a tenuous advantage over othersAo longo das últimas três décadas os algoritmos evolucionários vêm sendo aplicados com sucesso nas mais diversas áreas. Dentre as principais vantagens dos algoritmos evolucionários estão a facilidade de aplicação, a eficiência e a confiabilidade. Na remediação de águas subterrâneas, geralmente, os objetivos são minimizar custos, minimizar a presença do contaminante, maximizar a eficiência do bombeamento, entre outros. Esses objetivos são naturalmente conflitantes e a busca de soluções ótimas, ou quase ótimas, faz-se necessária. Tendo em vista esse fato, os métodos de otimização evolucionária vêm sendo aplicados e aperfeiçoados na busca dessas soluções. É apresentada uma breve descrição de alguns desses métodos, discutindo-se algumas de suas vantagens e limitações. Cinco funções matemáticas são utilizadas para avaliar o desempenho dos algoritmos e também para servir de base para efetuar uma comparação entre os mesmos. Para otimizar um sistema “bombear-e-tratar” na remediação de um sítio hipotético, são utilizados algoritmos evolucionários multipopulação, tratando o problema na sua dimensão multiobjetiva. A abordagem multipopulação vem sendo empregada como mitigadora de um dos principais inconvenientes da otimização evolucionária: o excessivo tempo computacional. O fluxo de águas subterrâneas é modelado com o MODFLOW (modular finite-difference flow model), enquanto o transporte de contaminante é simulado com o MT3DMS (modular three-dimensional multispecies transport model). São propostos dois algoritmos multipopulação: MINPGA (Multi-Island Niched Pareto Genetic Algorithm), a partir do NPGA (Niched Pareto Genetic Algorithm) e da abordagem de ilhas de injeção; MHBMO (Multiple Hive Honey Bee Mating Optimization), uma versão multipopulação do HBMO (Honey Bee Mating Optimization). Também é utilizada uma versão multipopulação do PSO (Particle Swarm Optimization), chamada MCPSO (Multi-Swarm Cooperative Particle Swarm Optimization). Os testes com funções matemáticas validaram os algoritmos apresentados, e o problema de otimização do sistema “bombear-e-tratar” tem como objetivos a minimização do custo da remediação e da quantidade final da pluma contaminante. Todos os algoritmos obtiveram bons resultados, com sutil vantagem para o MINPGARecursos hídricosÁguas subterrâneasContaminantesAlgoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneasMulti-population evolutionary algorithm multi-objective optimization of groundwater remediationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/16850/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2009_dis_mrpinto.pdf2009_dis_mrpinto.pdfapplication/pdf2846960http://repositorio.ufc.br/bitstream/riufc/16850/1/2009_dis_mrpinto.pdf353a0d728d376b636e02366ac277a02aMD51riufc/168502021-08-10 09:45:24.774oai:repositorio.ufc.br:riufc/16850Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-08-10T12:45:24Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
dc.title.en.pt_BR.fl_str_mv Multi-population evolutionary algorithm multi-objective optimization of groundwater remediation
title Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
spellingShingle Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
Pinto, Marcos Rodrigues
Recursos hídricos
Águas subterrâneas
Contaminantes
title_short Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
title_full Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
title_fullStr Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
title_full_unstemmed Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
title_sort Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas
author Pinto, Marcos Rodrigues
author_facet Pinto, Marcos Rodrigues
author_role author
dc.contributor.author.fl_str_mv Pinto, Marcos Rodrigues
dc.contributor.advisor1.fl_str_mv Martins, Eduardo Sávio Passos Rodrigues
contributor_str_mv Martins, Eduardo Sávio Passos Rodrigues
dc.subject.por.fl_str_mv Recursos hídricos
Águas subterrâneas
Contaminantes
topic Recursos hídricos
Águas subterrâneas
Contaminantes
description Through the last three decades the evolutionary algorithms have been successful on application to many areas. Easily applied, efficiency and confidence are the main advantages of the evolutionary algorithms. In the groundwater remediation, generally, the objectives are the cost minimization, minimization of contaminant presence, maximization of pumping efficiency, among others. These objectives are naturally in conflicting and the search for optimal solutions, or almost optimal solutions are needed. In view of that, the evolutionary optimization methods have been applied and refined in order to search these solutions. A brief description of these methods is presented, referring to their advantages and limitations. Five mathematical functions are used to measure the algorithms performance and allow a comparison between them. In order to optimize a “pump-and-treat” system in the remediation of a hypothetical site, multi-population evolutionary algorithms are used, considering the problem multi-objective dimension. The multi-population approach has been applied as mitigate for the main evolutionary optimization drawback: the excessive computational time. The groundwater flow modeler MODFLOW (modular finite-difference flow model) is used with the contaminant transport simulator MT3DMS (modular three-dimensional multispecies transport model). Two multi-population algorithms are presented: MINPGA (Multi-Island Niched Pareto Genetic Algorithm), that is a NPGA (Niched Pareto Genetic Algorithm) multi-population version with the injection island approach; MHBMO (Multi-Hive Honey Bee Mating Optimization), that is a HBMO (Honey Bee Mating Optimization) multi-population version. A PSO (Particle Swarm Optimization) multi-population version, called MCPSO (Multi-Swarm Cooperative Particle Swarm Optimization) is too used. Tests with mathematical functions validate the presented algorithms. Remediation problem using the “pumping-and-treat” technique had as objectives the minimization of remediation cost and minimization of contaminant final plume. The results were shown to be very good for all algorithms, but MINPGA had a tenuous advantage over others
publishDate 2009
dc.date.issued.fl_str_mv 2009
dc.date.accessioned.fl_str_mv 2016-05-17T18:06:39Z
dc.date.available.fl_str_mv 2016-05-17T18:06:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PINTO, M. R. Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas. 2009. 143 f. Dissertação (Mestrado em Engenharia Civil: Recursos Hídricos)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2009.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/16850
identifier_str_mv PINTO, M. R. Algoritmos evolucionários multipopulação na otimização multiobjetiva da remediação de águas subterrâneas. 2009. 143 f. Dissertação (Mestrado em Engenharia Civil: Recursos Hídricos)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2009.
url http://www.repositorio.ufc.br/handle/riufc/16850
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/16850/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/16850/1/2009_dis_mrpinto.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
353a0d728d376b636e02366ac277a02a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793205424160768