Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/52562 |
Resumo: | Natural gas, economically more attractive and cleaner than other fossil fuels, has been an important alternative to expanding the global energy supply. However, it has low energy density, which means storage and transportation costs are high. Adsorbed natural gas (ANG) is an option for vehicular application and can be stored at moderate pressures (~3.5–6.5 MPa). Finding the adsorbent material and storage conditions that insert this alternative in a scenario comparable to compressed natural gas is fundamental for the development of this technology. To save experimental effort, a mathematical model capable of reproducing or predicting successive charge/discharge cycles during the operation of an ANG tank from adsorption equilibrium data obtained by molecular simulation is being proposed in this study. The model, based on the Ideal Adsorbed Solution Theory (IAST) and implemented using gPROMS, is validated by experimental data from tanks filled with activated carbons available in the literature. It is possible to relate the performance of carbonaceous materials to their structures to predict the optimal pore size for ANG application that maximizes power supply and minimizes bed deactivation due to heavy alkane accumulation. Aiming to reduce storage tank deactivation, a pilot-scale process is adopted through simulations on Aspen Adsorption using a Pressure Swing Adsorption (PSA) technology to remove heavy hydrocarbons from natural gas with industrial active carbons. Each column operates according to four steps: pressurization, adsorption at 40 bar, depressurization and purge at 1 bar. The operating conditions of the process (flowrates, bed geometry and step times) are optimized, seeking the maximization of the performance parameters: purity, recovery and productivity, being possible to produce virtually C3+ free fuel, ideal for storage by adsorption. The influence of natural gas composition on the energy performance of GNA technology is analyzed. |
| id |
UFC-7_a6117bcf8eab38cfb288be8f85fd8a01 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/52562 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Peixoto, Hugo RochaLucena, Sebastião Mardônio Pereira de2020-06-25T00:10:30Z2020-06-25T00:10:30Z2020PEIXOTO, H. R. Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados. 2020. 119 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/52562Natural gas, economically more attractive and cleaner than other fossil fuels, has been an important alternative to expanding the global energy supply. However, it has low energy density, which means storage and transportation costs are high. Adsorbed natural gas (ANG) is an option for vehicular application and can be stored at moderate pressures (~3.5–6.5 MPa). Finding the adsorbent material and storage conditions that insert this alternative in a scenario comparable to compressed natural gas is fundamental for the development of this technology. To save experimental effort, a mathematical model capable of reproducing or predicting successive charge/discharge cycles during the operation of an ANG tank from adsorption equilibrium data obtained by molecular simulation is being proposed in this study. The model, based on the Ideal Adsorbed Solution Theory (IAST) and implemented using gPROMS, is validated by experimental data from tanks filled with activated carbons available in the literature. It is possible to relate the performance of carbonaceous materials to their structures to predict the optimal pore size for ANG application that maximizes power supply and minimizes bed deactivation due to heavy alkane accumulation. Aiming to reduce storage tank deactivation, a pilot-scale process is adopted through simulations on Aspen Adsorption using a Pressure Swing Adsorption (PSA) technology to remove heavy hydrocarbons from natural gas with industrial active carbons. Each column operates according to four steps: pressurization, adsorption at 40 bar, depressurization and purge at 1 bar. The operating conditions of the process (flowrates, bed geometry and step times) are optimized, seeking the maximization of the performance parameters: purity, recovery and productivity, being possible to produce virtually C3+ free fuel, ideal for storage by adsorption. The influence of natural gas composition on the energy performance of GNA technology is analyzed.O gás natural, economicamente mais atraente e mais limpo que outros combustíveis fósseis, tem sido uma alternativa importante à expansão do suprimento global de energia. No entanto, possui baixa densidade energética, o que significa que os custos de armazenamento e transporte são elevados. O gás natural adsorvido (GNA) é uma opção para aplicação veicular e pode ser armazenado a pressões moderadas (~3,5–6,5 MPa). Encontrar o material adsorvente e as condições de armazenamento que inserem essa alternativa em um cenário comparável ao gás natural comprimido é fundamental para o desenvolvimento dessa tecnologia. Para economizar esforços experimentais, um modelo matemático capaz de reproduzir ou prever ciclos sucessivos de carga/descarga durante a operação de um tanque de GNA a partir de dados de equilíbrio de adsorção obtidos por simulação molecular está sendo proposto neste estudo. O modelo, baseado na Teoria da Solução Adsorvida Ideal (IAST) e implementado em gPROMS, é validado por dados experimentais de tanques recheados de carbonos disponíveis na literatura. É possível relacionar o desempenho dos materiais carbonáceos com suas estruturas para prever o tamanho de poro ideal para a aplicação de GNA que maximiza o fornecimento de energia e minimiza a desativação do leito devido ao acúmulo de alcanos pesados. Visando à redução da desativação do tanque de armazenamento, é proposto um processo em escala piloto, através de simulações em Aspen Adsorption, utilizando a tecnologia Pressure Swing Adsorption (PSA), para remover os hidrocarbonetos pesados do gás natural com carbonos ativados comerciais. Cada coluna opera em quatro passos: pressurização, adsorção a 40 bar, despressurização e purga a 1 bar. As condições operacionais do processo (vazões, geometria do leito e tempos das etapas) são otimizadas buscando maximização dos parâmetros de desempenho: pureza, recuperação e produtividade, sendo possível a produção do combustível praticamente isento de C3+, ideal para armazenamento por adsorção. É analisada a influência da composição do gás natural no desempenho energético da tecnologia GNA.Engenharia químicaAdsorçãoGás natural - ArmazenamentoPurificationNatural gásViabilidade energética da tecnologia gás natural adsorvido em carbonos ativadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2020_tese_hrpeixoto.pdf2020_tese_hrpeixoto.pdfapplication/pdf1800748http://repositorio.ufc.br/bitstream/riufc/52562/7/2020_tese_hrpeixoto.pdf08b3f9c8f96de91a2d833830de832a09MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/52562/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58riufc/525622022-06-08 13:53:17.048oai:repositorio.ufc.br:riufc/52562Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-06-08T16:53:17Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados |
| title |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados |
| spellingShingle |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados Peixoto, Hugo Rocha Engenharia química Adsorção Gás natural - Armazenamento Purification Natural gás |
| title_short |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados |
| title_full |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados |
| title_fullStr |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados |
| title_full_unstemmed |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados |
| title_sort |
Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados |
| author |
Peixoto, Hugo Rocha |
| author_facet |
Peixoto, Hugo Rocha |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Peixoto, Hugo Rocha |
| dc.contributor.advisor1.fl_str_mv |
Lucena, Sebastião Mardônio Pereira de |
| contributor_str_mv |
Lucena, Sebastião Mardônio Pereira de |
| dc.subject.por.fl_str_mv |
Engenharia química Adsorção Gás natural - Armazenamento Purification Natural gás |
| topic |
Engenharia química Adsorção Gás natural - Armazenamento Purification Natural gás |
| description |
Natural gas, economically more attractive and cleaner than other fossil fuels, has been an important alternative to expanding the global energy supply. However, it has low energy density, which means storage and transportation costs are high. Adsorbed natural gas (ANG) is an option for vehicular application and can be stored at moderate pressures (~3.5–6.5 MPa). Finding the adsorbent material and storage conditions that insert this alternative in a scenario comparable to compressed natural gas is fundamental for the development of this technology. To save experimental effort, a mathematical model capable of reproducing or predicting successive charge/discharge cycles during the operation of an ANG tank from adsorption equilibrium data obtained by molecular simulation is being proposed in this study. The model, based on the Ideal Adsorbed Solution Theory (IAST) and implemented using gPROMS, is validated by experimental data from tanks filled with activated carbons available in the literature. It is possible to relate the performance of carbonaceous materials to their structures to predict the optimal pore size for ANG application that maximizes power supply and minimizes bed deactivation due to heavy alkane accumulation. Aiming to reduce storage tank deactivation, a pilot-scale process is adopted through simulations on Aspen Adsorption using a Pressure Swing Adsorption (PSA) technology to remove heavy hydrocarbons from natural gas with industrial active carbons. Each column operates according to four steps: pressurization, adsorption at 40 bar, depressurization and purge at 1 bar. The operating conditions of the process (flowrates, bed geometry and step times) are optimized, seeking the maximization of the performance parameters: purity, recovery and productivity, being possible to produce virtually C3+ free fuel, ideal for storage by adsorption. The influence of natural gas composition on the energy performance of GNA technology is analyzed. |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-06-25T00:10:30Z |
| dc.date.available.fl_str_mv |
2020-06-25T00:10:30Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PEIXOTO, H. R. Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados. 2020. 119 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/52562 |
| identifier_str_mv |
PEIXOTO, H. R. Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados. 2020. 119 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020. |
| url |
http://www.repositorio.ufc.br/handle/riufc/52562 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/52562/7/2020_tese_hrpeixoto.pdf http://repositorio.ufc.br/bitstream/riufc/52562/8/license.txt |
| bitstream.checksum.fl_str_mv |
08b3f9c8f96de91a2d833830de832a09 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793311209750528 |