Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Peixoto, Hugo Rocha
Orientador(a): Lucena, Sebastião Mardônio Pereira de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/52562
Resumo: Natural gas, economically more attractive and cleaner than other fossil fuels, has been an important alternative to expanding the global energy supply. However, it has low energy density, which means storage and transportation costs are high. Adsorbed natural gas (ANG) is an option for vehicular application and can be stored at moderate pressures (~3.5–6.5 MPa). Finding the adsorbent material and storage conditions that insert this alternative in a scenario comparable to compressed natural gas is fundamental for the development of this technology. To save experimental effort, a mathematical model capable of reproducing or predicting successive charge/discharge cycles during the operation of an ANG tank from adsorption equilibrium data obtained by molecular simulation is being proposed in this study. The model, based on the Ideal Adsorbed Solution Theory (IAST) and implemented using gPROMS, is validated by experimental data from tanks filled with activated carbons available in the literature. It is possible to relate the performance of carbonaceous materials to their structures to predict the optimal pore size for ANG application that maximizes power supply and minimizes bed deactivation due to heavy alkane accumulation. Aiming to reduce storage tank deactivation, a pilot-scale process is adopted through simulations on Aspen Adsorption using a Pressure Swing Adsorption (PSA) technology to remove heavy hydrocarbons from natural gas with industrial active carbons. Each column operates according to four steps: pressurization, adsorption at 40 bar, depressurization and purge at 1 bar. The operating conditions of the process (flowrates, bed geometry and step times) are optimized, seeking the maximization of the performance parameters: purity, recovery and productivity, being possible to produce virtually C3+ free fuel, ideal for storage by adsorption. The influence of natural gas composition on the energy performance of GNA technology is analyzed.
id UFC-7_a6117bcf8eab38cfb288be8f85fd8a01
oai_identifier_str oai:repositorio.ufc.br:riufc/52562
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Peixoto, Hugo RochaLucena, Sebastião Mardônio Pereira de2020-06-25T00:10:30Z2020-06-25T00:10:30Z2020PEIXOTO, H. R. Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados. 2020. 119 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/52562Natural gas, economically more attractive and cleaner than other fossil fuels, has been an important alternative to expanding the global energy supply. However, it has low energy density, which means storage and transportation costs are high. Adsorbed natural gas (ANG) is an option for vehicular application and can be stored at moderate pressures (~3.5–6.5 MPa). Finding the adsorbent material and storage conditions that insert this alternative in a scenario comparable to compressed natural gas is fundamental for the development of this technology. To save experimental effort, a mathematical model capable of reproducing or predicting successive charge/discharge cycles during the operation of an ANG tank from adsorption equilibrium data obtained by molecular simulation is being proposed in this study. The model, based on the Ideal Adsorbed Solution Theory (IAST) and implemented using gPROMS, is validated by experimental data from tanks filled with activated carbons available in the literature. It is possible to relate the performance of carbonaceous materials to their structures to predict the optimal pore size for ANG application that maximizes power supply and minimizes bed deactivation due to heavy alkane accumulation. Aiming to reduce storage tank deactivation, a pilot-scale process is adopted through simulations on Aspen Adsorption using a Pressure Swing Adsorption (PSA) technology to remove heavy hydrocarbons from natural gas with industrial active carbons. Each column operates according to four steps: pressurization, adsorption at 40 bar, depressurization and purge at 1 bar. The operating conditions of the process (flowrates, bed geometry and step times) are optimized, seeking the maximization of the performance parameters: purity, recovery and productivity, being possible to produce virtually C3+ free fuel, ideal for storage by adsorption. The influence of natural gas composition on the energy performance of GNA technology is analyzed.O gás natural, economicamente mais atraente e mais limpo que outros combustíveis fósseis, tem sido uma alternativa importante à expansão do suprimento global de energia. No entanto, possui baixa densidade energética, o que significa que os custos de armazenamento e transporte são elevados. O gás natural adsorvido (GNA) é uma opção para aplicação veicular e pode ser armazenado a pressões moderadas (~3,5–6,5 MPa). Encontrar o material adsorvente e as condições de armazenamento que inserem essa alternativa em um cenário comparável ao gás natural comprimido é fundamental para o desenvolvimento dessa tecnologia. Para economizar esforços experimentais, um modelo matemático capaz de reproduzir ou prever ciclos sucessivos de carga/descarga durante a operação de um tanque de GNA a partir de dados de equilíbrio de adsorção obtidos por simulação molecular está sendo proposto neste estudo. O modelo, baseado na Teoria da Solução Adsorvida Ideal (IAST) e implementado em gPROMS, é validado por dados experimentais de tanques recheados de carbonos disponíveis na literatura. É possível relacionar o desempenho dos materiais carbonáceos com suas estruturas para prever o tamanho de poro ideal para a aplicação de GNA que maximiza o fornecimento de energia e minimiza a desativação do leito devido ao acúmulo de alcanos pesados. Visando à redução da desativação do tanque de armazenamento, é proposto um processo em escala piloto, através de simulações em Aspen Adsorption, utilizando a tecnologia Pressure Swing Adsorption (PSA), para remover os hidrocarbonetos pesados do gás natural com carbonos ativados comerciais. Cada coluna opera em quatro passos: pressurização, adsorção a 40 bar, despressurização e purga a 1 bar. As condições operacionais do processo (vazões, geometria do leito e tempos das etapas) são otimizadas buscando maximização dos parâmetros de desempenho: pureza, recuperação e produtividade, sendo possível a produção do combustível praticamente isento de C3+, ideal para armazenamento por adsorção. É analisada a influência da composição do gás natural no desempenho energético da tecnologia GNA.Engenharia químicaAdsorçãoGás natural - ArmazenamentoPurificationNatural gásViabilidade energética da tecnologia gás natural adsorvido em carbonos ativadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2020_tese_hrpeixoto.pdf2020_tese_hrpeixoto.pdfapplication/pdf1800748http://repositorio.ufc.br/bitstream/riufc/52562/7/2020_tese_hrpeixoto.pdf08b3f9c8f96de91a2d833830de832a09MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/52562/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58riufc/525622022-06-08 13:53:17.048oai:repositorio.ufc.br:riufc/52562Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-06-08T16:53:17Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
title Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
spellingShingle Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
Peixoto, Hugo Rocha
Engenharia química
Adsorção
Gás natural - Armazenamento
Purification
Natural gás
title_short Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
title_full Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
title_fullStr Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
title_full_unstemmed Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
title_sort Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados
author Peixoto, Hugo Rocha
author_facet Peixoto, Hugo Rocha
author_role author
dc.contributor.author.fl_str_mv Peixoto, Hugo Rocha
dc.contributor.advisor1.fl_str_mv Lucena, Sebastião Mardônio Pereira de
contributor_str_mv Lucena, Sebastião Mardônio Pereira de
dc.subject.por.fl_str_mv Engenharia química
Adsorção
Gás natural - Armazenamento
Purification
Natural gás
topic Engenharia química
Adsorção
Gás natural - Armazenamento
Purification
Natural gás
description Natural gas, economically more attractive and cleaner than other fossil fuels, has been an important alternative to expanding the global energy supply. However, it has low energy density, which means storage and transportation costs are high. Adsorbed natural gas (ANG) is an option for vehicular application and can be stored at moderate pressures (~3.5–6.5 MPa). Finding the adsorbent material and storage conditions that insert this alternative in a scenario comparable to compressed natural gas is fundamental for the development of this technology. To save experimental effort, a mathematical model capable of reproducing or predicting successive charge/discharge cycles during the operation of an ANG tank from adsorption equilibrium data obtained by molecular simulation is being proposed in this study. The model, based on the Ideal Adsorbed Solution Theory (IAST) and implemented using gPROMS, is validated by experimental data from tanks filled with activated carbons available in the literature. It is possible to relate the performance of carbonaceous materials to their structures to predict the optimal pore size for ANG application that maximizes power supply and minimizes bed deactivation due to heavy alkane accumulation. Aiming to reduce storage tank deactivation, a pilot-scale process is adopted through simulations on Aspen Adsorption using a Pressure Swing Adsorption (PSA) technology to remove heavy hydrocarbons from natural gas with industrial active carbons. Each column operates according to four steps: pressurization, adsorption at 40 bar, depressurization and purge at 1 bar. The operating conditions of the process (flowrates, bed geometry and step times) are optimized, seeking the maximization of the performance parameters: purity, recovery and productivity, being possible to produce virtually C3+ free fuel, ideal for storage by adsorption. The influence of natural gas composition on the energy performance of GNA technology is analyzed.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-06-25T00:10:30Z
dc.date.available.fl_str_mv 2020-06-25T00:10:30Z
dc.date.issued.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEIXOTO, H. R. Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados. 2020. 119 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/52562
identifier_str_mv PEIXOTO, H. R. Viabilidade energética da tecnologia gás natural adsorvido em carbonos ativados. 2020. 119 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2020.
url http://www.repositorio.ufc.br/handle/riufc/52562
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/52562/7/2020_tese_hrpeixoto.pdf
http://repositorio.ufc.br/bitstream/riufc/52562/8/license.txt
bitstream.checksum.fl_str_mv 08b3f9c8f96de91a2d833830de832a09
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793311209750528