Transformada floor of log aplicada em contexto cross-dimensional

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Peixoto, Solon Alves
Orientador(a): Rebouças Filho, Pedro Pedrosa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/76791
Resumo: This work proposes a grouping method, independent of dimensionality, called Floor of Log (FoL) transform. The advantage of this method is its ease and practicality in implementation, as well as the ability to generate multiple effects on data, among which clustering and compression stand out. Three applications were chosen aimed at solving real problems. In the first, FoL was evaluated in tasks related to focused on facial recognition, specifically on feature arrays. For this assessment, the CelebA, Extended YaleB, AR and LFW datasets were used together with the analysis of the dataset size after applying FoL and accuracy(ACC) of the matching result between the faces. The second application evaluates FoL in a two-dimensional environment, specifically in computed tomography for lung segmentation and, consequently, within an image processing environment. In this evaluation, the LUNA16 and LAPISCO together with Haunsdorff Distance(HD), DICE, ACC, Jaccard and Matthews Correlation Coefficient (MCC) . The third application seeks to evaluate FoL in a context more dimension-independent, within general-purpose convolutional neural networks. The CIFAR10 and CIFAR100 benchmark datasets were used, in addition to Davies-Bouldin(DB), Calinski-Harabasz(CH) and Silhouette (Sil). As a result, FoL when applied to arrays in the CelebA, Extended YaleB, AR and LFW datasets, obtained equal or better results when compared with the approach using the same classifiers with features not compressed, but with an 86 to 91% reduction compared to the original size of the data. In a two-dimensional environment, FoL was applied for lung segmentation in computed tomography images. The FoL algorithm achieves good results with approximately 19 seconds in the most significant result in an exam with 430 slices and presents similarity indices reaching HD 3.5, DICE 83.63, and Jaccard 99.73 and indices qualitative reaching Sensitivity 83.87, MCC 83.08, and ACC 99.62. Finally, the FoL was also presented as a supervised clustering transform that can be trained to achieve better results and attached to other approaches such as Deep Convolutional Neural Networks reaching DB 1.74, CH 137 and Sil 0.17.
id UFC-7_a90135d5fb6ddfd7a3b85e7525192128
oai_identifier_str oai:repositorio.ufc.br:riufc/76791
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Peixoto, Solon AlvesRebouças Filho, Pedro Pedrosa2024-04-16T13:26:09Z2024-04-16T13:26:09Z2023-07-05PEIXOTO, A. S. Transformada floor of log aplicada em contexto cross-dimensional. 2023. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.http://repositorio.ufc.br/handle/riufc/76791This work proposes a grouping method, independent of dimensionality, called Floor of Log (FoL) transform. The advantage of this method is its ease and practicality in implementation, as well as the ability to generate multiple effects on data, among which clustering and compression stand out. Three applications were chosen aimed at solving real problems. In the first, FoL was evaluated in tasks related to focused on facial recognition, specifically on feature arrays. For this assessment, the CelebA, Extended YaleB, AR and LFW datasets were used together with the analysis of the dataset size after applying FoL and accuracy(ACC) of the matching result between the faces. The second application evaluates FoL in a two-dimensional environment, specifically in computed tomography for lung segmentation and, consequently, within an image processing environment. In this evaluation, the LUNA16 and LAPISCO together with Haunsdorff Distance(HD), DICE, ACC, Jaccard and Matthews Correlation Coefficient (MCC) . The third application seeks to evaluate FoL in a context more dimension-independent, within general-purpose convolutional neural networks. The CIFAR10 and CIFAR100 benchmark datasets were used, in addition to Davies-Bouldin(DB), Calinski-Harabasz(CH) and Silhouette (Sil). As a result, FoL when applied to arrays in the CelebA, Extended YaleB, AR and LFW datasets, obtained equal or better results when compared with the approach using the same classifiers with features not compressed, but with an 86 to 91% reduction compared to the original size of the data. In a two-dimensional environment, FoL was applied for lung segmentation in computed tomography images. The FoL algorithm achieves good results with approximately 19 seconds in the most significant result in an exam with 430 slices and presents similarity indices reaching HD 3.5, DICE 83.63, and Jaccard 99.73 and indices qualitative reaching Sensitivity 83.87, MCC 83.08, and ACC 99.62. Finally, the FoL was also presented as a supervised clustering transform that can be trained to achieve better results and attached to other approaches such as Deep Convolutional Neural Networks reaching DB 1.74, CH 137 and Sil 0.17.Este trabalho propõe um método de agrupamento, independente de dimensionalidade, chamado transformada Floor of Log (FoL). A vantagem deste método consiste na sua facilidade e praticidade na implementação, como também na capacidade de poder gerar múltiplos efeitos nos dados, entre eles, destacam-se a clusterização e a compressão. Foram escolhidas três aplicações direcionadas para soluções de problemas reais. Na primeira foi avaliado o FoL em tarefas relacionadas a reconhecimento facial, especificamente sobre os arrays das features. Para essa avaliação, foram utilizados os datasets CelebA, Extended YaleB, AR e LFW em conjunto com a análise do tamanho do dataset após a aplicação do FoL e da acurácia(ACC) do resultado de matching entre as faces. A segunda aplicação avalia o FoL em um ambiente bi-dimensional, especificamente em tomografia computadorizada para segmentação de pulmão e, consequentemente, dentro de um ambiente de processamento de imagens. Nesta avaliação, foram utilizados os datasets LUNA16 e LAPISCO em conjunto das métricas Haunsdorff Distance(HD), DICE, ACC, Jaccard e Matthews Correlation Coefficient (MCC) . A terceira aplicação busca avaliar o FoL em um contexto mais independente de dimensão, dentro de redes neurais convolucionais para propósitos gerais. Foram utilizados os datasets de benchmark CIFAR10 e CIFAR100 além de Davies-Bouldin(DB),Calinski-Harabasz(CH) e Silhouette (Sil). Como resultados, o FoL quando aplicado sobre os arrays nos datasets CelebA, Extended YaleB, AR e LFW, obteve resultados iguais ou melhores quando comparados com a abordagem usando os mesmos classificadores com características não comprimidas, mas com uma redução de 86 a 91% em comparação com o tamanho original dos dados. Em um ambiente bi-dimensional, FoL foi aplicado para a segmentação de pulmão em imagens de tomografia computadorizada. O algoritmo FoL alcança bons resultados com aproximadamente 19 segundos no resultado mais significativo em um exame com 430 fatias e apresenta índices de similaridade alcançando HD 3,5, DICE 83,63, e Jaccard 99,73 e índices qualitativos alcançando Sensibilidade 83,87, MCC 83,08, e ACC 99,62. Finalmente, o FoL também foi apresentado como um transformada de agrupamento supervisionado que pode ser treinada para alcançar melhores resultados e anexado a outras abordagens como aplicações de Redes Neurais Profundas Convolutivas alcançando DB 1,74, CH 137 e Sil 0,17.PEIXOTO, A. S. Transformada floor of log aplicada em contexto cross-dimensional. 2023. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.Transformada floor of log aplicada em contexto cross-dimensionalFLOOR OF LOG TRANSFORM APPLIED IN CROSS-DIMENSIONAL CONTEXTinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisFloor of LogReconhecimento FacialSegmentação de PulmãoAprendizado de MáquinaFloor of LogFacial RecognitionLung SegmentationLearning MachineCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/8203523299943090http://lattes.cnpq.br/43479653020976142024-02-09LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/76791/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2023_tese_sapeixoto.pdf2023_tese_sapeixoto.pdfTeseapplication/pdf54460677http://repositorio.ufc.br/bitstream/riufc/76791/3/2023_tese_sapeixoto.pdf42a139cc8ccc67ea085cd43f7560cc0dMD53riufc/767912024-05-22 10:39:00.209oai:repositorio.ufc.br:riufc/76791Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-05-22T13:39Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Transformada floor of log aplicada em contexto cross-dimensional
dc.title.en.pt_BR.fl_str_mv FLOOR OF LOG TRANSFORM APPLIED IN CROSS-DIMENSIONAL CONTEXT
title Transformada floor of log aplicada em contexto cross-dimensional
spellingShingle Transformada floor of log aplicada em contexto cross-dimensional
Peixoto, Solon Alves
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Floor of Log
Reconhecimento Facial
Segmentação de Pulmão
Aprendizado de Máquina
Floor of Log
Facial Recognition
Lung Segmentation
Learning Machine
title_short Transformada floor of log aplicada em contexto cross-dimensional
title_full Transformada floor of log aplicada em contexto cross-dimensional
title_fullStr Transformada floor of log aplicada em contexto cross-dimensional
title_full_unstemmed Transformada floor of log aplicada em contexto cross-dimensional
title_sort Transformada floor of log aplicada em contexto cross-dimensional
author Peixoto, Solon Alves
author_facet Peixoto, Solon Alves
author_role author
dc.contributor.author.fl_str_mv Peixoto, Solon Alves
dc.contributor.advisor1.fl_str_mv Rebouças Filho, Pedro Pedrosa
contributor_str_mv Rebouças Filho, Pedro Pedrosa
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Floor of Log
Reconhecimento Facial
Segmentação de Pulmão
Aprendizado de Máquina
Floor of Log
Facial Recognition
Lung Segmentation
Learning Machine
dc.subject.ptbr.pt_BR.fl_str_mv Floor of Log
Reconhecimento Facial
Segmentação de Pulmão
Aprendizado de Máquina
dc.subject.en.pt_BR.fl_str_mv Floor of Log
Facial Recognition
Lung Segmentation
Learning Machine
description This work proposes a grouping method, independent of dimensionality, called Floor of Log (FoL) transform. The advantage of this method is its ease and practicality in implementation, as well as the ability to generate multiple effects on data, among which clustering and compression stand out. Three applications were chosen aimed at solving real problems. In the first, FoL was evaluated in tasks related to focused on facial recognition, specifically on feature arrays. For this assessment, the CelebA, Extended YaleB, AR and LFW datasets were used together with the analysis of the dataset size after applying FoL and accuracy(ACC) of the matching result between the faces. The second application evaluates FoL in a two-dimensional environment, specifically in computed tomography for lung segmentation and, consequently, within an image processing environment. In this evaluation, the LUNA16 and LAPISCO together with Haunsdorff Distance(HD), DICE, ACC, Jaccard and Matthews Correlation Coefficient (MCC) . The third application seeks to evaluate FoL in a context more dimension-independent, within general-purpose convolutional neural networks. The CIFAR10 and CIFAR100 benchmark datasets were used, in addition to Davies-Bouldin(DB), Calinski-Harabasz(CH) and Silhouette (Sil). As a result, FoL when applied to arrays in the CelebA, Extended YaleB, AR and LFW datasets, obtained equal or better results when compared with the approach using the same classifiers with features not compressed, but with an 86 to 91% reduction compared to the original size of the data. In a two-dimensional environment, FoL was applied for lung segmentation in computed tomography images. The FoL algorithm achieves good results with approximately 19 seconds in the most significant result in an exam with 430 slices and presents similarity indices reaching HD 3.5, DICE 83.63, and Jaccard 99.73 and indices qualitative reaching Sensitivity 83.87, MCC 83.08, and ACC 99.62. Finally, the FoL was also presented as a supervised clustering transform that can be trained to achieve better results and attached to other approaches such as Deep Convolutional Neural Networks reaching DB 1.74, CH 137 and Sil 0.17.
publishDate 2023
dc.date.issued.fl_str_mv 2023-07-05
dc.date.accessioned.fl_str_mv 2024-04-16T13:26:09Z
dc.date.available.fl_str_mv 2024-04-16T13:26:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEIXOTO, A. S. Transformada floor of log aplicada em contexto cross-dimensional. 2023. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/76791
identifier_str_mv PEIXOTO, A. S. Transformada floor of log aplicada em contexto cross-dimensional. 2023. 135 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
url http://repositorio.ufc.br/handle/riufc/76791
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/76791/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/76791/3/2023_tese_sapeixoto.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
42a139cc8ccc67ea085cd43f7560cc0d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793204722663424