Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/47164 |
Resumo: | This work’s main objective is to prove a theorem by Grothendieck which characterizes vector bundles over P1. The theorem states that if E is a vector bundle over P1, than the associated sheaf E is of type O(a1)⊕O(a2)...⊕O(ar), with a i ∈ Z and this decomposition is unique.We will follow the road used by TEIXIDOR (Massachusetts 2002). In order to be able to do that, we’ll visit some results on coherent sheaves and cohomology of the projective space. On the first chapter, some commutative algebra results are introduced and used as we move foward to prove a lemma by Grothendieck which heps us to prove a theorem about finiteness of coherent sheaves. On the second, we develop the initial part of coherent sheaves theory and show that on a complete variaty over a field k, the space of global sections of a coherent sheaf has finite dimension. On the third part we talk about sheaf cohomology aiming to study the cohomology of the projective space via ˇCech cohomology. In particular, for sheaves of type O(n), n ∈ Z and coherent sheaves when O X (1) is a very ample sheaf. In the last chapter we show that every vector bundle corresponds to a locally free sheaf, we introduce the functor e and Ext and prove the main theorem. |
| id |
UFC-7_b4548be97d3176b59ccb7ed87960e6e5 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/47164 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Garcez, José Eduardo MouraMaia, José Alberto Duarte2019-10-29T17:01:46Z2019-10-29T17:01:46Z2013-10-31GARCEZ, José Eduardo Moura. Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1. 2013. 47 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013.http://www.repositorio.ufc.br/handle/riufc/47164This work’s main objective is to prove a theorem by Grothendieck which characterizes vector bundles over P1. The theorem states that if E is a vector bundle over P1, than the associated sheaf E is of type O(a1)⊕O(a2)...⊕O(ar), with a i ∈ Z and this decomposition is unique.We will follow the road used by TEIXIDOR (Massachusetts 2002). In order to be able to do that, we’ll visit some results on coherent sheaves and cohomology of the projective space. On the first chapter, some commutative algebra results are introduced and used as we move foward to prove a lemma by Grothendieck which heps us to prove a theorem about finiteness of coherent sheaves. On the second, we develop the initial part of coherent sheaves theory and show that on a complete variaty over a field k, the space of global sections of a coherent sheaf has finite dimension. On the third part we talk about sheaf cohomology aiming to study the cohomology of the projective space via ˇCech cohomology. In particular, for sheaves of type O(n), n ∈ Z and coherent sheaves when O X (1) is a very ample sheaf. In the last chapter we show that every vector bundle corresponds to a locally free sheaf, we introduce the functor e and Ext and prove the main theorem.O principal objetivo deste trabalho é provar o teorema de Grothendieck que caracteriza os fibrados em P1 . O teorema diz que se E é um fibrado em P1 , então o feixe associado E é do tipo O(a 1 ) ⊕ ... ⊕ O(a r ), onde a i ∈ Z e essa decomposição é única. Usaremos o caminho trilhado em TEIXIDOR (2002). Para isso, visitamos alguns resultados de feixes coerentes e de cohomologia do espaço projetivo. No primeiro capítulo, introduzimos resultados de Álgebra Comutativa que serão usados no decorrer do texto e provamos um lema de Grothendieck que nos ajuda, no capítulo seguinte, a provar um teorema de finitude para feixes coerentes. No segundo, desenvolvemos a parte inicial da teoria de feixes coerentes e mostramos que numa variedade completa sobre um corpo k, o espaço vetorial das seções globais de um feixe coerente tem dimensão finita. Na terceira parte, falamos sobre a cohomologia de feixes com o objetivo de estudar a cohomologia do espaço projetivo, via cohomologia de ˇCech. Em particular, para feixes do tipo O(n), n ∈ Z e feixes coerentes, quando O X (1) é um feixe invertível muito amplo. No último capítulo, mostramos que todo fibrado corresponde a um feixe localmente livre, introduzimos os funtores e e Ext e provamos o teorema principal.FeixesFibradosCohomologia do espaço projetivoTeorema de GrothendieckSheavesVector BundlesCohomology of the projective spaceGrothendieck’s theoremCohomologia do espaço projetivo e a caracterização dos fibrados sobre p1Projective space cohomology and characterization of p1 bundlesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/47164/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56ORIGINAL2013_dis_jemgarcez.pdf2013_dis_jemgarcez.pdfdissertaçao eduardo garcezapplication/pdf472525http://repositorio.ufc.br/bitstream/riufc/47164/5/2013_dis_jemgarcez.pdf3eb383eccacc89a6959c9a08f2a635f9MD55riufc/471642019-10-29 14:01:46.507oai:repositorio.ufc.br:riufc/47164Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-10-29T17:01:46Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 |
| dc.title.en.pt_BR.fl_str_mv |
Projective space cohomology and characterization of p1 bundles |
| title |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 |
| spellingShingle |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 Garcez, José Eduardo Moura Feixes Fibrados Cohomologia do espaço projetivo Teorema de Grothendieck Sheaves Vector Bundles Cohomology of the projective space Grothendieck’s theorem |
| title_short |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 |
| title_full |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 |
| title_fullStr |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 |
| title_full_unstemmed |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 |
| title_sort |
Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1 |
| author |
Garcez, José Eduardo Moura |
| author_facet |
Garcez, José Eduardo Moura |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Garcez, José Eduardo Moura |
| dc.contributor.advisor1.fl_str_mv |
Maia, José Alberto Duarte |
| contributor_str_mv |
Maia, José Alberto Duarte |
| dc.subject.por.fl_str_mv |
Feixes Fibrados Cohomologia do espaço projetivo Teorema de Grothendieck Sheaves Vector Bundles Cohomology of the projective space Grothendieck’s theorem |
| topic |
Feixes Fibrados Cohomologia do espaço projetivo Teorema de Grothendieck Sheaves Vector Bundles Cohomology of the projective space Grothendieck’s theorem |
| description |
This work’s main objective is to prove a theorem by Grothendieck which characterizes vector bundles over P1. The theorem states that if E is a vector bundle over P1, than the associated sheaf E is of type O(a1)⊕O(a2)...⊕O(ar), with a i ∈ Z and this decomposition is unique.We will follow the road used by TEIXIDOR (Massachusetts 2002). In order to be able to do that, we’ll visit some results on coherent sheaves and cohomology of the projective space. On the first chapter, some commutative algebra results are introduced and used as we move foward to prove a lemma by Grothendieck which heps us to prove a theorem about finiteness of coherent sheaves. On the second, we develop the initial part of coherent sheaves theory and show that on a complete variaty over a field k, the space of global sections of a coherent sheaf has finite dimension. On the third part we talk about sheaf cohomology aiming to study the cohomology of the projective space via ˇCech cohomology. In particular, for sheaves of type O(n), n ∈ Z and coherent sheaves when O X (1) is a very ample sheaf. In the last chapter we show that every vector bundle corresponds to a locally free sheaf, we introduce the functor e and Ext and prove the main theorem. |
| publishDate |
2013 |
| dc.date.issued.fl_str_mv |
2013-10-31 |
| dc.date.accessioned.fl_str_mv |
2019-10-29T17:01:46Z |
| dc.date.available.fl_str_mv |
2019-10-29T17:01:46Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
GARCEZ, José Eduardo Moura. Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1. 2013. 47 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/47164 |
| identifier_str_mv |
GARCEZ, José Eduardo Moura. Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1. 2013. 47 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. |
| url |
http://www.repositorio.ufc.br/handle/riufc/47164 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/47164/6/license.txt http://repositorio.ufc.br/bitstream/riufc/47164/5/2013_dis_jemgarcez.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 3eb383eccacc89a6959c9a08f2a635f9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793124138549248 |