Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Garcez, José Eduardo Moura
Orientador(a): Maia, José Alberto Duarte
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/47164
Resumo: This work’s main objective is to prove a theorem by Grothendieck which characterizes vector bundles over P1. The theorem states that if E is a vector bundle over P1, than the associated sheaf E is of type O(a1)⊕O(a2)...⊕O(ar), with a i ∈ Z and this decomposition is unique.We will follow the road used by TEIXIDOR (Massachusetts 2002). In order to be able to do that, we’ll visit some results on coherent sheaves and cohomology of the projective space. On the first chapter, some commutative algebra results are introduced and used as we move foward to prove a lemma by Grothendieck which heps us to prove a theorem about finiteness of coherent sheaves. On the second, we develop the initial part of coherent sheaves theory and show that on a complete variaty over a field k, the space of global sections of a coherent sheaf has finite dimension. On the third part we talk about sheaf cohomology aiming to study the cohomology of the projective space via ˇCech cohomology. In particular, for sheaves of type O(n), n ∈ Z and coherent sheaves when O X (1) is a very ample sheaf. In the last chapter we show that every vector bundle corresponds to a locally free sheaf, we introduce the functor e and Ext and prove the main theorem.
id UFC-7_b4548be97d3176b59ccb7ed87960e6e5
oai_identifier_str oai:repositorio.ufc.br:riufc/47164
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Garcez, José Eduardo MouraMaia, José Alberto Duarte2019-10-29T17:01:46Z2019-10-29T17:01:46Z2013-10-31GARCEZ, José Eduardo Moura. Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1. 2013. 47 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013.http://www.repositorio.ufc.br/handle/riufc/47164This work’s main objective is to prove a theorem by Grothendieck which characterizes vector bundles over P1. The theorem states that if E is a vector bundle over P1, than the associated sheaf E is of type O(a1)⊕O(a2)...⊕O(ar), with a i ∈ Z and this decomposition is unique.We will follow the road used by TEIXIDOR (Massachusetts 2002). In order to be able to do that, we’ll visit some results on coherent sheaves and cohomology of the projective space. On the first chapter, some commutative algebra results are introduced and used as we move foward to prove a lemma by Grothendieck which heps us to prove a theorem about finiteness of coherent sheaves. On the second, we develop the initial part of coherent sheaves theory and show that on a complete variaty over a field k, the space of global sections of a coherent sheaf has finite dimension. On the third part we talk about sheaf cohomology aiming to study the cohomology of the projective space via ˇCech cohomology. In particular, for sheaves of type O(n), n ∈ Z and coherent sheaves when O X (1) is a very ample sheaf. In the last chapter we show that every vector bundle corresponds to a locally free sheaf, we introduce the functor e and Ext and prove the main theorem.O principal objetivo deste trabalho é provar o teorema de Grothendieck que caracteriza os fibrados em P1 . O teorema diz que se E é um fibrado em P1 , então o feixe associado E é do tipo O(a 1 ) ⊕ ... ⊕ O(a r ), onde a i ∈ Z e essa decomposição é única. Usaremos o caminho trilhado em TEIXIDOR (2002). Para isso, visitamos alguns resultados de feixes coerentes e de cohomologia do espaço projetivo. No primeiro capítulo, introduzimos resultados de Álgebra Comutativa que serão usados no decorrer do texto e provamos um lema de Grothendieck que nos ajuda, no capítulo seguinte, a provar um teorema de finitude para feixes coerentes. No segundo, desenvolvemos a parte inicial da teoria de feixes coerentes e mostramos que numa variedade completa sobre um corpo k, o espaço vetorial das seções globais de um feixe coerente tem dimensão finita. Na terceira parte, falamos sobre a cohomologia de feixes com o objetivo de estudar a cohomologia do espaço projetivo, via cohomologia de ˇCech. Em particular, para feixes do tipo O(n), n ∈ Z e feixes coerentes, quando O X (1) é um feixe invertível muito amplo. No último capítulo, mostramos que todo fibrado corresponde a um feixe localmente livre, introduzimos os funtores e e Ext e provamos o teorema principal.FeixesFibradosCohomologia do espaço projetivoTeorema de GrothendieckSheavesVector BundlesCohomology of the projective spaceGrothendieck’s theoremCohomologia do espaço projetivo e a caracterização dos fibrados sobre p1Projective space cohomology and characterization of p1 bundlesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/47164/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56ORIGINAL2013_dis_jemgarcez.pdf2013_dis_jemgarcez.pdfdissertaçao eduardo garcezapplication/pdf472525http://repositorio.ufc.br/bitstream/riufc/47164/5/2013_dis_jemgarcez.pdf3eb383eccacc89a6959c9a08f2a635f9MD55riufc/471642019-10-29 14:01:46.507oai:repositorio.ufc.br:riufc/47164Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-10-29T17:01:46Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
dc.title.en.pt_BR.fl_str_mv Projective space cohomology and characterization of p1 bundles
title Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
spellingShingle Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
Garcez, José Eduardo Moura
Feixes
Fibrados
Cohomologia do espaço projetivo
Teorema de Grothendieck
Sheaves
Vector Bundles
Cohomology of the projective space
Grothendieck’s theorem
title_short Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
title_full Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
title_fullStr Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
title_full_unstemmed Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
title_sort Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1
author Garcez, José Eduardo Moura
author_facet Garcez, José Eduardo Moura
author_role author
dc.contributor.author.fl_str_mv Garcez, José Eduardo Moura
dc.contributor.advisor1.fl_str_mv Maia, José Alberto Duarte
contributor_str_mv Maia, José Alberto Duarte
dc.subject.por.fl_str_mv Feixes
Fibrados
Cohomologia do espaço projetivo
Teorema de Grothendieck
Sheaves
Vector Bundles
Cohomology of the projective space
Grothendieck’s theorem
topic Feixes
Fibrados
Cohomologia do espaço projetivo
Teorema de Grothendieck
Sheaves
Vector Bundles
Cohomology of the projective space
Grothendieck’s theorem
description This work’s main objective is to prove a theorem by Grothendieck which characterizes vector bundles over P1. The theorem states that if E is a vector bundle over P1, than the associated sheaf E is of type O(a1)⊕O(a2)...⊕O(ar), with a i ∈ Z and this decomposition is unique.We will follow the road used by TEIXIDOR (Massachusetts 2002). In order to be able to do that, we’ll visit some results on coherent sheaves and cohomology of the projective space. On the first chapter, some commutative algebra results are introduced and used as we move foward to prove a lemma by Grothendieck which heps us to prove a theorem about finiteness of coherent sheaves. On the second, we develop the initial part of coherent sheaves theory and show that on a complete variaty over a field k, the space of global sections of a coherent sheaf has finite dimension. On the third part we talk about sheaf cohomology aiming to study the cohomology of the projective space via ˇCech cohomology. In particular, for sheaves of type O(n), n ∈ Z and coherent sheaves when O X (1) is a very ample sheaf. In the last chapter we show that every vector bundle corresponds to a locally free sheaf, we introduce the functor e and Ext and prove the main theorem.
publishDate 2013
dc.date.issued.fl_str_mv 2013-10-31
dc.date.accessioned.fl_str_mv 2019-10-29T17:01:46Z
dc.date.available.fl_str_mv 2019-10-29T17:01:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GARCEZ, José Eduardo Moura. Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1. 2013. 47 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/47164
identifier_str_mv GARCEZ, José Eduardo Moura. Cohomologia do espaço projetivo e a caracterização dos fibrados sobre p1. 2013. 47 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013.
url http://www.repositorio.ufc.br/handle/riufc/47164
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/47164/6/license.txt
http://repositorio.ufc.br/bitstream/riufc/47164/5/2013_dis_jemgarcez.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
3eb383eccacc89a6959c9a08f2a635f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793124138549248