Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/55347 |
Resumo: | This work presents a study on differential drive wheeled mobile robots regarding its localization estimation using sensor fusion techniques and control over a reference trajectory. The robot’s posture is an extremely important variable to be estimated, specially for autonomous mobile robots as it has to drive along a path without manual intervention. Posture estimation provided by individual sensors has shown to be inaccurate or straightforward mismatched, leading to a need of data fusion from different sources. Sensors such as accelerometer, gyroscope and magnetometer each have its own intrinsic constructive limitations. However, by combining all their flaws into a linear model allows optimal estimators, such as Kalman Filter (KF), to be used and produce estimates close to real life behavior. For the trajectory tracking and disturbance rejection, a linear control strategy for a linearized mobile robot model is applied. The system is modeled with error states to be carried out by a Linear Quadratic Regulator (LQR) controller along with a feedforward reference control action so that the reference trajectory is accordingly tracked. |
| id |
UFC-7_b92eb2fa79487658040a0bcf0e56a955 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/55347 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Forte, Marcus Davi do NascimentoCorreia, Wilkley BezerraNogueira, Fabrício Gonzalez2020-11-17T13:52:36Z2020-11-17T13:52:36Z2018FORTE, Marcus Davi do Nascimento. Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion. 2018. 88 f. Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/55347This work presents a study on differential drive wheeled mobile robots regarding its localization estimation using sensor fusion techniques and control over a reference trajectory. The robot’s posture is an extremely important variable to be estimated, specially for autonomous mobile robots as it has to drive along a path without manual intervention. Posture estimation provided by individual sensors has shown to be inaccurate or straightforward mismatched, leading to a need of data fusion from different sources. Sensors such as accelerometer, gyroscope and magnetometer each have its own intrinsic constructive limitations. However, by combining all their flaws into a linear model allows optimal estimators, such as Kalman Filter (KF), to be used and produce estimates close to real life behavior. For the trajectory tracking and disturbance rejection, a linear control strategy for a linearized mobile robot model is applied. The system is modeled with error states to be carried out by a Linear Quadratic Regulator (LQR) controller along with a feedforward reference control action so that the reference trajectory is accordingly tracked.This work presents a study on differential drive wheeled mobile robots regarding its localization estimation using sensor fusion techniques and control over a reference trajectory. The robot’s posture is an extremely important variable to be estimated, specially for autonomous mobile robots as it has to drive along a path without manual intervention. Posture estimation provided by individual sensors has shown to be inaccurate or straightforward mismatched, leading to a need of data fusion from different sources. Sensors such as accelerometer, gyroscope and magnetometer each have its own intrinsic constructive limitations. However, by combining all their flaws into a linear model allows optimal estimators, such as Kalman Filter (KF), to be used and produce estimates close to real life behavior. For the trajectory tracking and disturbance rejection, a linear control strategy for a linearized mobile robot model is applied. The system is modeled with error states to be carried out by a Linear Quadratic Regulator (LQR) controller along with a feedforward reference control action so that the reference trajectory is accordingly tracked.Mobile robotSensor fusionLQR ControlKalman filterReference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_dis_mdnforte.pdf2018_dis_mdnforte.pdfapplication/pdf10950580http://repositorio.ufc.br/bitstream/riufc/55347/1/2018_dis_mdnforte.pdfe5a1b556e3c87be8b551286224d4e541MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/55347/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/553472022-05-10 10:34:23.941oai:repositorio.ufc.br:riufc/55347Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-05-10T13:34:23Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion |
| title |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion |
| spellingShingle |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion Forte, Marcus Davi do Nascimento Mobile robot Sensor fusion LQR Control Kalman filter |
| title_short |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion |
| title_full |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion |
| title_fullStr |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion |
| title_full_unstemmed |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion |
| title_sort |
Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion |
| author |
Forte, Marcus Davi do Nascimento |
| author_facet |
Forte, Marcus Davi do Nascimento |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Correia, Wilkley Bezerra |
| dc.contributor.author.fl_str_mv |
Forte, Marcus Davi do Nascimento |
| dc.contributor.advisor1.fl_str_mv |
Nogueira, Fabrício Gonzalez |
| contributor_str_mv |
Nogueira, Fabrício Gonzalez |
| dc.subject.por.fl_str_mv |
Mobile robot Sensor fusion LQR Control Kalman filter |
| topic |
Mobile robot Sensor fusion LQR Control Kalman filter |
| description |
This work presents a study on differential drive wheeled mobile robots regarding its localization estimation using sensor fusion techniques and control over a reference trajectory. The robot’s posture is an extremely important variable to be estimated, specially for autonomous mobile robots as it has to drive along a path without manual intervention. Posture estimation provided by individual sensors has shown to be inaccurate or straightforward mismatched, leading to a need of data fusion from different sources. Sensors such as accelerometer, gyroscope and magnetometer each have its own intrinsic constructive limitations. However, by combining all their flaws into a linear model allows optimal estimators, such as Kalman Filter (KF), to be used and produce estimates close to real life behavior. For the trajectory tracking and disturbance rejection, a linear control strategy for a linearized mobile robot model is applied. The system is modeled with error states to be carried out by a Linear Quadratic Regulator (LQR) controller along with a feedforward reference control action so that the reference trajectory is accordingly tracked. |
| publishDate |
2018 |
| dc.date.issued.fl_str_mv |
2018 |
| dc.date.accessioned.fl_str_mv |
2020-11-17T13:52:36Z |
| dc.date.available.fl_str_mv |
2020-11-17T13:52:36Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
FORTE, Marcus Davi do Nascimento. Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion. 2018. 88 f. Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica, Fortaleza, 2018. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/55347 |
| identifier_str_mv |
FORTE, Marcus Davi do Nascimento. Reference trajectory tracking control of a nonholonomic mobile robotwith inertial sensor fusion. 2018. 88 f. Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica, Fortaleza, 2018. |
| url |
http://www.repositorio.ufc.br/handle/riufc/55347 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/55347/1/2018_dis_mdnforte.pdf http://repositorio.ufc.br/bitstream/riufc/55347/2/license.txt |
| bitstream.checksum.fl_str_mv |
e5a1b556e3c87be8b551286224d4e541 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793097421881344 |