Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Oliveira, Karen Maria Leopoldino
Orientador(a): Castelo Branco, Raimundo Mariano Gomes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/53612
Resumo: In recent years, the Brazilian Equatorial Margin has drawn attention due to its similarity to areas with new hydrocarbon discoveries in the African conjugated margin, and in French Guiana. However, studies on the tectonic regimes associated with transform margins and their evolution, structures, and petroleum potential are still lacking due to the geological complexity of this region. To address this knowledge gap, research has been done to better understand the geological structures, as well as to identify potential hydrocarbon accumulations in the deepwater Ceará Basin. To achieve this, we performed an integrated interpretation of a large 3D and 2D seismic data, new exploratory borehole data, as well as older well data with revised biostratigraphy. This data analysis refines the basin architecture and the Cretaceous-Paleogene tectonic evolution, including implications for hydrocarbon prospectivity in the Ceará Basin deepwater. The analysis also identifies potential hydrocarbon accumulations in turbiditic reservoirs and presents new insights about the dimensions of the underlying rift features situated in the continental slope. The results reveal a high potential for drift sequences in deepwater where the Late Albian-Early Cenomanian-Turonian sediments reach thicknesses of approximately 3048 to 4894 m. Moreover, this research shows evidence of Cretaceous to Paleogene magmatism, indicated by the well-imaged volcanoes and associated sills in the seismic data. The variety of stratigraphic and structural features developed through the Cretaceous history of the Mundaú sub-basin offers a variety of potential hydrocarbon traps and plays in a number of rift and post-rift sequences. In addition, a seismic attributes analysis and unsupervised machine learning approach were able to produce relatively high-resolution images and map the 3D geometry of ancient geomorphology across different stratigraphic levels from Albian to Turonian interval. A better understanding of the seismic geomorphology and seismic facies analysis provided valuable insights into an underexplored basin, and offer the best potential for deepwater stratigraphic traps. This approach may be used on similar frontier or emerging hydrocarbon basins to help de-risking the petroleum exploration.
id UFC-7_bb11b9a9737a378f27299cd048da65b6
oai_identifier_str oai:repositorio.ufc.br:riufc/53612
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Oliveira, Karen Maria LeopoldinoCastelo Branco, Raimundo Mariano Gomes2020-08-24T17:49:24Z2020-08-24T17:49:24Z2020OLIVEIRA, Karen Maria Leopoldino. Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach. 2020. 139 f. Tese (Doutorado em Geologia) - Universidade Federal do Ceará, Fortaleza. 2020.http://www.repositorio.ufc.br/handle/riufc/53612In recent years, the Brazilian Equatorial Margin has drawn attention due to its similarity to areas with new hydrocarbon discoveries in the African conjugated margin, and in French Guiana. However, studies on the tectonic regimes associated with transform margins and their evolution, structures, and petroleum potential are still lacking due to the geological complexity of this region. To address this knowledge gap, research has been done to better understand the geological structures, as well as to identify potential hydrocarbon accumulations in the deepwater Ceará Basin. To achieve this, we performed an integrated interpretation of a large 3D and 2D seismic data, new exploratory borehole data, as well as older well data with revised biostratigraphy. This data analysis refines the basin architecture and the Cretaceous-Paleogene tectonic evolution, including implications for hydrocarbon prospectivity in the Ceará Basin deepwater. The analysis also identifies potential hydrocarbon accumulations in turbiditic reservoirs and presents new insights about the dimensions of the underlying rift features situated in the continental slope. The results reveal a high potential for drift sequences in deepwater where the Late Albian-Early Cenomanian-Turonian sediments reach thicknesses of approximately 3048 to 4894 m. Moreover, this research shows evidence of Cretaceous to Paleogene magmatism, indicated by the well-imaged volcanoes and associated sills in the seismic data. The variety of stratigraphic and structural features developed through the Cretaceous history of the Mundaú sub-basin offers a variety of potential hydrocarbon traps and plays in a number of rift and post-rift sequences. In addition, a seismic attributes analysis and unsupervised machine learning approach were able to produce relatively high-resolution images and map the 3D geometry of ancient geomorphology across different stratigraphic levels from Albian to Turonian interval. A better understanding of the seismic geomorphology and seismic facies analysis provided valuable insights into an underexplored basin, and offer the best potential for deepwater stratigraphic traps. This approach may be used on similar frontier or emerging hydrocarbon basins to help de-risking the petroleum exploration.Nos últimos anos, a Margem Equatorial Brasileira chamou atenção para as novas descobertas de hidrocarbonetos, tanto na margem conjugada africana quanto na margem brasileira e na Guiana Francesa. Entretanto, estudos sobre o regime tectônico associados às margens transformantes, sua evolução, estruturas e potencial petrolífero ainda são escassos devido à grande complexidade geológica dessa região. Para suprir essa lacuna de conhecimento, foram realizadas pesquisas para melhor compreender as estruturas geológicas, assim como identificar possíveis locais para acúmulo de hidrocarbonetos em águas profundas da Bacia do Ceará. Foi realizada interpretação integrada de um grande volume de dados sísmicos 2D, um cubo sísmico, novos dados exploratórios de poço, bem como dados antigos de poços. Essa análise de dados refina a arquitetura da bacia e a evolução tectônica do Cretáceo ao Paleógeno, incluindo implicações para a prospecção de hidrocarbonetos em águas profundas da bacia. A análise também identifica possíveis acumulações de hidrocarbonetos em reservatórios turbidíticos e apresenta informações sobre as dimensões do rifte situado no talude. Os resultados revelam um alto potencial para as sequências drifte em águas profundas, onde a espessura dos sedimentos do intervalo Albiano-Cenomaniano-Turoniano atingem aproximadamente 3048 a 4894 m. Além disso, esta pesquisa mostra evidências de magmatismo do Cretáceo ao Paleógeno, indicadas pelos vulcões bem imageados e soleiras associadas nos dados sísmicos. A variedade de padrões estratigráficos e estruturais desenvolvidas ao longo do Cretáceo na bacia oferece potenciais de trapas para plays petrolíferos tanto no rifte quanto nas sequencias drifte da Bacia do Ceará. Além disso, análise de atributos sísmicos e uma abordagem não supervisionada de machine learning foram capazes de produzir imagens de alta resolução e mapear a geometria 3D da geomorfologia sísmica em diferentes níveis estratigráficos, do intervalo Albiano ao Turoniano. Uma melhor compreensão da geomorfologia sísmica e das análises de fácies sísmicas forneceram informações valiosas sobre uma bacia pouco explorada, oferecendo o melhor potencial para armadilhas estratigráficas em águas profundas. Essa abordagem pode ser usada em bacias de nova fronteira exploratória ou emergentes para ajudar a diminuir o risco de exploração.Margem Equatorial BrasileiraExploração de petróleoAtributos sísmicosCharacterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approachCharacterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81978http://repositorio.ufc.br/bitstream/riufc/53612/8/license.txt4247602db8c5bb0eb5b2dc93ccdf9494MD58ORIGINAL2020_tese_kmloliveira.pdf2020_tese_kmloliveira.pdfapplication/pdf15123074http://repositorio.ufc.br/bitstream/riufc/53612/9/2020_tese_kmloliveira.pdfa6772436ed8967e0e9a88c980b9881a0MD59riufc/536122021-03-29 15:02:26.373oai:repositorio.ufc.br:riufc/53612TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkENCg0KQW8gYWNlaXRhciBlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIChvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgZGUgYXV0b3JpYSkgZG8gZG9jdW1lbnRvIHF1ZSBlc3TDoSBzZW5kbyBkZXBvc2l0YWRvOg0KDQoxLiBEZWNsYXJhIHF1ZTogDQphKSBvIGRvY3VtZW50byDDqSBzZXUgdHJhYmFsaG8gb3JpZ2luYWw7DQpiKSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIHByaXZpbMOpZ2lvcyBtZW5jaW9uYWRvcyBuZXN0YSBsaWNlbsOnYTsNCmMpIG8gZGVww7NzaXRvIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCBwZWxvIG1lbm9zIHF1ZSBzZWphIGRvIHNldSBjb25oZWNpbWVudG8sIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZTsNCmQpIGNhc28gbyBkb2N1bWVudG8gY29udGVuaGEgbWF0ZXJpYWwgc3VqZWl0byBhIGRpcmVpdG9zIGF1dG9yaWFpcyBkZSB0ZXJjZWlyb3MsIHF1ZSBvYnRldmUgYXV0b3JpemHDp8OjbyBkbyBhdXRvciBvdSBkZXRlbnRvciBwYXJhIGNvbmNlZGVyIGFvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBvcyBwcml2aWzDqWdpb3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYTsNCmUpIG8gbWF0ZXJpYWwgc3VqZWl0byBhIGRpcmVpdG9zIGF1dG9yaWFpcyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSB2aW5jdWxhZG8gYW8ocykgbm9tZShzKSBkZSBzZXUocykgcmVzcGVjdGl2byhzKSBkZXRlbnRvcihlcyksIHNlamEgbm8gdGV4dG8gb3UgZW0gb3V0cmEgcGFydGUgZG8gY29udGXDumRvOyBlDQpmKSBjYXNvIG8gZG9jdW1lbnRvIHNlamEgcmVzdWx0YWRvIGRlIHRyYWJhbGhvIHBhdHJvY2luYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gb3Ugw7NyZ8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgcXVlIHNhdGlzZmV6IHF1YWxxdWVyIGRpcmVpdG8gZGUgcmV2aXPDo28gb3Ugb3V0cm9zIGNvbXByb21pc3NvcyByZXF1ZXJpZG9zIHBlbG9zIHJlc3BlY3Rpdm9zIGNvbnRyYXRvcyBvdSBhY29yZG9zLg0KDQoyLiBPdXRvcmdhIGFvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGU6DQphKSByZXByb2R1emlyLCBhbHRlcmFyIG8gZm9ybWF0bywgZSBvdSBkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGFxdWkgZGVwb3NpdGFkbzsNCmIpIGVtIG1laW8gaW1wcmVzc28gb3UgZWxldHLDtG5pY28sIG91IGVtIHF1YWxxdWVyIG3DrWRpYSwgaW5jbHVzaXZlIMOhdWRpbyBlIHbDrWRlbyBwYXJhIGZpbnMgZGUgZGl2dWxnYcOnw6NvOw0KYykgY29udmVydGVyIG8gZG9jdW1lbnRvIGRlcG9zaXRhZG8sIHNlbSBhbHRlcmFyIHNldSBjb250ZcO6ZG8sIHBhcmEgcXVhbHF1ZXIgbcOtZGlhIG91IGZvcm1hdG8sIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvIGRlIHNldSBjb250ZcO6ZG87IGUNCmQpIG1hbnRlciBtYWlzIHVtYSBjw7NwaWEgZGVzc2UgZm9ybWF0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFja3VwIGUgcHJlc2VydmHDp8OjbyBlbSBmb3JtYXRvIGRpZ2l0YWwuDQoNCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgc2V1IG5vbWUgY29tbyBhdXRvciBvdSBwcm9wcmlldMOhcmlvIGRlc3NlIGRvY3VtZW50byBlIG7Do28gZmFyw6EgbmVuaHVtIGFsdGVyYcOnw6NvLCBhbMOpbSBkbyBwZXJtaXRvIHBvciBlc3RhIGxpY2Vuw6dhLg0KDQpFbSBjYXNvIGRlIGTDunZpZGFzIG5vc3NvIGNvbnRhdG8gw6k6IHJlcG9zaXTDs3Jpb0B1ZmMuYnINCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-03-29T18:02:26Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
dc.title.en.pt_BR.fl_str_mv Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
title Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
spellingShingle Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
Oliveira, Karen Maria Leopoldino
Margem Equatorial Brasileira
Exploração de petróleo
Atributos sísmicos
title_short Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
title_full Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
title_fullStr Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
title_full_unstemmed Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
title_sort Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach
author Oliveira, Karen Maria Leopoldino
author_facet Oliveira, Karen Maria Leopoldino
author_role author
dc.contributor.author.fl_str_mv Oliveira, Karen Maria Leopoldino
dc.contributor.advisor1.fl_str_mv Castelo Branco, Raimundo Mariano Gomes
contributor_str_mv Castelo Branco, Raimundo Mariano Gomes
dc.subject.por.fl_str_mv Margem Equatorial Brasileira
Exploração de petróleo
Atributos sísmicos
topic Margem Equatorial Brasileira
Exploração de petróleo
Atributos sísmicos
description In recent years, the Brazilian Equatorial Margin has drawn attention due to its similarity to areas with new hydrocarbon discoveries in the African conjugated margin, and in French Guiana. However, studies on the tectonic regimes associated with transform margins and their evolution, structures, and petroleum potential are still lacking due to the geological complexity of this region. To address this knowledge gap, research has been done to better understand the geological structures, as well as to identify potential hydrocarbon accumulations in the deepwater Ceará Basin. To achieve this, we performed an integrated interpretation of a large 3D and 2D seismic data, new exploratory borehole data, as well as older well data with revised biostratigraphy. This data analysis refines the basin architecture and the Cretaceous-Paleogene tectonic evolution, including implications for hydrocarbon prospectivity in the Ceará Basin deepwater. The analysis also identifies potential hydrocarbon accumulations in turbiditic reservoirs and presents new insights about the dimensions of the underlying rift features situated in the continental slope. The results reveal a high potential for drift sequences in deepwater where the Late Albian-Early Cenomanian-Turonian sediments reach thicknesses of approximately 3048 to 4894 m. Moreover, this research shows evidence of Cretaceous to Paleogene magmatism, indicated by the well-imaged volcanoes and associated sills in the seismic data. The variety of stratigraphic and structural features developed through the Cretaceous history of the Mundaú sub-basin offers a variety of potential hydrocarbon traps and plays in a number of rift and post-rift sequences. In addition, a seismic attributes analysis and unsupervised machine learning approach were able to produce relatively high-resolution images and map the 3D geometry of ancient geomorphology across different stratigraphic levels from Albian to Turonian interval. A better understanding of the seismic geomorphology and seismic facies analysis provided valuable insights into an underexplored basin, and offer the best potential for deepwater stratigraphic traps. This approach may be used on similar frontier or emerging hydrocarbon basins to help de-risking the petroleum exploration.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-08-24T17:49:24Z
dc.date.available.fl_str_mv 2020-08-24T17:49:24Z
dc.date.issued.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Karen Maria Leopoldino. Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach. 2020. 139 f. Tese (Doutorado em Geologia) - Universidade Federal do Ceará, Fortaleza. 2020.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/53612
identifier_str_mv OLIVEIRA, Karen Maria Leopoldino. Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach. 2020. 139 f. Tese (Doutorado em Geologia) - Universidade Federal do Ceará, Fortaleza. 2020.
url http://www.repositorio.ufc.br/handle/riufc/53612
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/53612/8/license.txt
http://repositorio.ufc.br/bitstream/riufc/53612/9/2020_tese_kmloliveira.pdf
bitstream.checksum.fl_str_mv 4247602db8c5bb0eb5b2dc93ccdf9494
a6772436ed8967e0e9a88c980b9881a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793388021088256