K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/23696 |
Resumo: | A kNN query retrieve the k points of interest that are closest to the query point, where proximity is computed from the query point to the points of interest. Time-dependent road networks are represented as weighted graphs, where the weight of an edge depends on the time one passes through that edge. This way, we can model periodic congestions during rush hour and similar effects. Travel time on road networks heavily depends on the traffic and, typically, the time a moving object takes to traverse a segment depends on departure time. In time-dependent networks, a kNN query, called TD-kNN, returns the k points of interest with minimum travel-time from the query point. As a more concrete example, consider the following scenario. Imagine a tourist in Paris who is interested to visit the touristic attraction closest from him/her. Let us consider two points of interest in the city, the Eiffel Tower and the Cathedral of Notre Dame. He/she asks a query asking for the touristic attraction whose the path leading up to it is the fastest at that time, the answer depends on the departure time. For example, at 10h it takes 10 minutes to go to the Cathedral. It is the nearest attraction. Although, if he/she asks the same query at 22h, in the same spatial point, the nearest attraction is the Eiffel Tower. In this work, we identify a variation of nearest neighbors queries in time-dependent road networks that has wide applications and requires novel algorithms for processing. Differently from TD-kNN queries, we aim at minimizing the travel time from points of interest to the query point. With this approach, a cab company can find the nearest taxi in time to a passenger requesting transportation. More specifically, we address the following query: find the k points of interest (e.g. taxi drivers) which can move to the query point (e.g. a taxi user) in the minimum amount of time. Previous works have proposed solutions to answer kNN queries considering the time dependency of the network but not computing the proximity from the points of interest to the query point. We propose and discuss a solution to this type of query which are based on the previously proposed incremental network expansion and use the A∗ search algorithm equipped with suitable heuristic functions. We also discuss the design and correctness of our algorithm and present experimental results that show the efficiency and effectiveness of our solution. |
| id |
UFC-7_c34cbc6bc97d83ba8e1f1e0bf3d7fb7f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/23696 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Chucre, Mirla Rafaela Rafael BragaMacêdo, José Antônio Fernandes deMonteiro Filho, José Maria da Silva2017-06-29T13:54:36Z2017-06-29T13:54:36Z2015CHUCRE, Mirla Rafaela Rafael Braga. K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point. 2015. 65 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2015.http://www.repositorio.ufc.br/handle/riufc/23696A kNN query retrieve the k points of interest that are closest to the query point, where proximity is computed from the query point to the points of interest. Time-dependent road networks are represented as weighted graphs, where the weight of an edge depends on the time one passes through that edge. This way, we can model periodic congestions during rush hour and similar effects. Travel time on road networks heavily depends on the traffic and, typically, the time a moving object takes to traverse a segment depends on departure time. In time-dependent networks, a kNN query, called TD-kNN, returns the k points of interest with minimum travel-time from the query point. As a more concrete example, consider the following scenario. Imagine a tourist in Paris who is interested to visit the touristic attraction closest from him/her. Let us consider two points of interest in the city, the Eiffel Tower and the Cathedral of Notre Dame. He/she asks a query asking for the touristic attraction whose the path leading up to it is the fastest at that time, the answer depends on the departure time. For example, at 10h it takes 10 minutes to go to the Cathedral. It is the nearest attraction. Although, if he/she asks the same query at 22h, in the same spatial point, the nearest attraction is the Eiffel Tower. In this work, we identify a variation of nearest neighbors queries in time-dependent road networks that has wide applications and requires novel algorithms for processing. Differently from TD-kNN queries, we aim at minimizing the travel time from points of interest to the query point. With this approach, a cab company can find the nearest taxi in time to a passenger requesting transportation. More specifically, we address the following query: find the k points of interest (e.g. taxi drivers) which can move to the query point (e.g. a taxi user) in the minimum amount of time. Previous works have proposed solutions to answer kNN queries considering the time dependency of the network but not computing the proximity from the points of interest to the query point. We propose and discuss a solution to this type of query which are based on the previously proposed incremental network expansion and use the A∗ search algorithm equipped with suitable heuristic functions. We also discuss the design and correctness of our algorithm and present experimental results that show the efficiency and effectiveness of our solution.Uma consulta de vizinhos mais próximos (ou kNN, do inglês k nearest neighbours) recupera o conjunto de k pontos de interesse que são mais próximos a um ponto de consulta, onde a proximidade é computada do ponto de consulta para cada ponto de interesse. Nas redes de rodovias tradicionais (estáticas) o custo de deslocamento de um ponto a outro é dado pela distância física entre esses dois pontos. Por outro lado, nas redes dependentes do tempo o custo de deslocamento (ou seja, o tempo de viagem) entre dois pontos varia de acordo com o instante de partida. Nessas redes, as consultas kNN são denominadas TD-kNN (do inglês Time-Dependent kNN). As redes de rodovias dependentes do tempo representam de forma mais adequada algumas situações reais, como, por exemplo, o deslocamento em grandes centros urbanos, onde o tempo para se deslocar de um ponto a outro durante os horários de pico, quando o tráfego é intenso e as ruas estão congestionadas, é muito maior do que em horários normais. Neste contexto, uma consulta típica consiste em descobrir os k restaurantes (pontos de interesse) mais próximos de um determinado cliente (ponto de consulta) caso este inicie o seu deslocamento ao meio dia. Nesta dissertação nós estudamos o problema de processar uma variação de consulta de vizinhos mais próximos em redes viárias dependentes do tempo. Diferentemente das consultas TD-kNN, onde a proximidade é calculada do ponto de consulta para um determinado ponto de interesse, estamos interessados em situações onde a proximidade deve ser calculada de um ponto de interesse para o ponto de consulta. Neste caso, uma consulta típica consiste em descobrir os k taxistas (pontos de interesse) mais próximos (ou seja, com o menor tempo de viagem) de um determinado cliente (ponto de consulta) caso eles iniciem o seu deslocamento até o referido cliente ao meio dia. Desta forma, nos cenários investigados nesta dissertação, são os pontos de interesse que se deslocam até o ponto de consulta, e não o contrário. O método proposto para executar este tipo de consulta aplica uma busca A∗ à medida que vai, de maneira incremental, explorando a rede. O objetivo do método é reduzir o percentual da rede avaliado na busca. A construção e a corretude do método são discutidas e são apresentados resultados experimentais com dados reais e sintéticos que mostram a eficiência da solução proposta.Processamento de consultas espaciaisRedes dependentes do tempoConsultas de vizinho mais próximoTD-kNN queriesTime-dependent networksK-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query pointinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/23696/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2015_dis_mrrbchucre.pdf2015_dis_mrrbchucre.pdfapplication/pdf15845328http://repositorio.ufc.br/bitstream/riufc/23696/1/2015_dis_mrrbchucre.pdfa2e4d0a03ca943372c92852d4bcf7236MD51riufc/236962020-07-01 09:47:29.107oai:repositorio.ufc.br:riufc/23696Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-07-01T12:47:29Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point |
| title |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point |
| spellingShingle |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point Chucre, Mirla Rafaela Rafael Braga Processamento de consultas espaciais Redes dependentes do tempo Consultas de vizinho mais próximo TD-kNN queries Time-dependent networks |
| title_short |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point |
| title_full |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point |
| title_fullStr |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point |
| title_full_unstemmed |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point |
| title_sort |
K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point |
| author |
Chucre, Mirla Rafaela Rafael Braga |
| author_facet |
Chucre, Mirla Rafaela Rafael Braga |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Macêdo, José Antônio Fernandes de |
| dc.contributor.author.fl_str_mv |
Chucre, Mirla Rafaela Rafael Braga |
| dc.contributor.advisor1.fl_str_mv |
Monteiro Filho, José Maria da Silva |
| contributor_str_mv |
Monteiro Filho, José Maria da Silva |
| dc.subject.por.fl_str_mv |
Processamento de consultas espaciais Redes dependentes do tempo Consultas de vizinho mais próximo TD-kNN queries Time-dependent networks |
| topic |
Processamento de consultas espaciais Redes dependentes do tempo Consultas de vizinho mais próximo TD-kNN queries Time-dependent networks |
| description |
A kNN query retrieve the k points of interest that are closest to the query point, where proximity is computed from the query point to the points of interest. Time-dependent road networks are represented as weighted graphs, where the weight of an edge depends on the time one passes through that edge. This way, we can model periodic congestions during rush hour and similar effects. Travel time on road networks heavily depends on the traffic and, typically, the time a moving object takes to traverse a segment depends on departure time. In time-dependent networks, a kNN query, called TD-kNN, returns the k points of interest with minimum travel-time from the query point. As a more concrete example, consider the following scenario. Imagine a tourist in Paris who is interested to visit the touristic attraction closest from him/her. Let us consider two points of interest in the city, the Eiffel Tower and the Cathedral of Notre Dame. He/she asks a query asking for the touristic attraction whose the path leading up to it is the fastest at that time, the answer depends on the departure time. For example, at 10h it takes 10 minutes to go to the Cathedral. It is the nearest attraction. Although, if he/she asks the same query at 22h, in the same spatial point, the nearest attraction is the Eiffel Tower. In this work, we identify a variation of nearest neighbors queries in time-dependent road networks that has wide applications and requires novel algorithms for processing. Differently from TD-kNN queries, we aim at minimizing the travel time from points of interest to the query point. With this approach, a cab company can find the nearest taxi in time to a passenger requesting transportation. More specifically, we address the following query: find the k points of interest (e.g. taxi drivers) which can move to the query point (e.g. a taxi user) in the minimum amount of time. Previous works have proposed solutions to answer kNN queries considering the time dependency of the network but not computing the proximity from the points of interest to the query point. We propose and discuss a solution to this type of query which are based on the previously proposed incremental network expansion and use the A∗ search algorithm equipped with suitable heuristic functions. We also discuss the design and correctness of our algorithm and present experimental results that show the efficiency and effectiveness of our solution. |
| publishDate |
2015 |
| dc.date.issued.fl_str_mv |
2015 |
| dc.date.accessioned.fl_str_mv |
2017-06-29T13:54:36Z |
| dc.date.available.fl_str_mv |
2017-06-29T13:54:36Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CHUCRE, Mirla Rafaela Rafael Braga. K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point. 2015. 65 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2015. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/23696 |
| identifier_str_mv |
CHUCRE, Mirla Rafaela Rafael Braga. K-nearest neighbors queries in time-dependent road networks: analyzing scenarios where points of interest move to the query point. 2015. 65 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2015. |
| url |
http://www.repositorio.ufc.br/handle/riufc/23696 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/23696/2/license.txt http://repositorio.ufc.br/bitstream/riufc/23696/1/2015_dis_mrrbchucre.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 a2e4d0a03ca943372c92852d4bcf7236 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793376069419008 |