Utilização da estatística gradiente nos modelos Hurdle

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Lima, Camila Raquel Câmara
Orientador(a): Freitas, Sílvia Maria de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/39661
Resumo: In many practical problems, there is an interest in modeling data from counting, such as disease incidence. In many practical problems, there is an interest in modeling data from counting, such as incidence of diseases, number of transit, among others situations of interest. In most applications involving this type of data, the Poisson and Binomial Negative distributions are used for modeling. However, the structure of the counting data may exhibit excess zeros and superdispersion, which makes modeling using such distributions undue because they do not have the flexibility to accommodate such behavior. A class of models capable of accommodating both properties (zeros excess and superdispersion) is the class of the Hurdle Models (Cameron; Trivedi, 1998, Regression analysis of count data). In this class of models, because of their complexity, it is common to use hypothesis tests based on the generalized likelihood ratio (Wilks, 1938, Annals of Mathematical Statistics), Wald (Wald, 1943, Transactions of the American Mathematical Society) and Escore (Rao, 1948, Proceedings of the Cambridge Philosophical Society). However, a new statistic has been proposed, called Gradiente (Terrel, 2002, Computing Science and Statistics) as an alternative to classical tests and has received particular attention from the statistical community due to its good properties. The present work considers the performance of the Gradient statistic in comparison to the performance of the other statistics usual in the model textit Hurdle. For this, the class of textit Hurdle models are described, their properties, inferences aspects and the main asymptotic results of the tests are presented. A Monte Carlo simulation study based on the Poisson-Binomial and Hurdle Binomial Negative Binomial models is used to evaluate the performance of the tests in finite samples and at the end of the simulation, the results to a real set of data.
id UFC-7_cefa985eb7ff6a754664b8cc53ef765b
oai_identifier_str oai:repositorio.ufc.br:riufc/39661
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Lima, Camila Raquel CâmaraNobre, Juvêncio SantosFreitas, Sílvia Maria de2019-02-14T18:57:45Z2019-02-14T18:57:45Z2018LIMA, Camila Raquel Câmara. Utilização da estatística gradiente nos modelos Hurdle. 241f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, 2018.http://www.repositorio.ufc.br/handle/riufc/39661In many practical problems, there is an interest in modeling data from counting, such as disease incidence. In many practical problems, there is an interest in modeling data from counting, such as incidence of diseases, number of transit, among others situations of interest. In most applications involving this type of data, the Poisson and Binomial Negative distributions are used for modeling. However, the structure of the counting data may exhibit excess zeros and superdispersion, which makes modeling using such distributions undue because they do not have the flexibility to accommodate such behavior. A class of models capable of accommodating both properties (zeros excess and superdispersion) is the class of the Hurdle Models (Cameron; Trivedi, 1998, Regression analysis of count data). In this class of models, because of their complexity, it is common to use hypothesis tests based on the generalized likelihood ratio (Wilks, 1938, Annals of Mathematical Statistics), Wald (Wald, 1943, Transactions of the American Mathematical Society) and Escore (Rao, 1948, Proceedings of the Cambridge Philosophical Society). However, a new statistic has been proposed, called Gradiente (Terrel, 2002, Computing Science and Statistics) as an alternative to classical tests and has received particular attention from the statistical community due to its good properties. The present work considers the performance of the Gradient statistic in comparison to the performance of the other statistics usual in the model textit Hurdle. For this, the class of textit Hurdle models are described, their properties, inferences aspects and the main asymptotic results of the tests are presented. A Monte Carlo simulation study based on the Poisson-Binomial and Hurdle Binomial Negative Binomial models is used to evaluate the performance of the tests in finite samples and at the end of the simulation, the results to a real set of data.Em muitos problemas práticos, há interesse em modelar dados oriundos de contagem, como por exemplo, incidência de doenças, número de ocorrência de acidentes de trânsito, entre outras situações de interesse. Na maioria das aplicações que envolvem esse tipo de dados, utiliza-se para modelagem as distribuições Poisson e Binomial Negativa. No entanto, a estrutura dos dados de contagem pode apresentar excesso de zeros e superdispersão, o que torna a modelagem utilizando tais distribuições inadequada, pois estas não possuem flexibilidade para acomodar tal comportamento. Uma classe de modelos capaz de acomodar ambas as propriedades (excesso de zeros e superdispersão) é a classe dos Modelos Hurdle (Cameron; Trivedi, 1998, Regression analysis of count data). Nesta classe de modelos, devido a sua complexidade, é comum utilizar os testes de hipóteses baseados na razão de verossimilhanças generalizada (Wilks,1938, Annals of Mathematical Statistics), Wald (Wald, 1943, Transactions of the American Mathematical Society) e Escore (Rao, 1948, Proceedings of the Cambridge Philosophical Society). Entretanto, uma nova estatística foi proposta, chamada Gradiente (Terrel, 2002, Computing Science and Statistics), como uma alternativa aos testes clássicos e tem recebido particular atenção da comunidade estatística devido as suas boas propriedades. O presente trabalho considera o desempenho da estatística Gradiente em comparação ao desempenho das demais estatísticas usuais nos modelo Hurdle. Para isso, descreve-se a classe de modelos Hurdle, suas propriedades, aspectos inferenciais e apresenta-se os principais resultados assintóticos dos testes. Considera-se um estudo de simulação Monte Carlo com base nos modelos Hurdle Poisson - Binomial e Hurdle Binomial Negativa - Binomial para avaliar o desempenho dos testes em amostras finitas e ao final da simulação, aplicam-se os resultados a um conjunto real de dados.Modelos HurdleEstatística GradienteEstatística da Razão de Verossimilhanças GeneralizadasEstatística de WaldEstatística EscoreUtilização da estatística gradiente nos modelos HurdleUsing gradient statistics in Hurdle modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/39661/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2018_dis_crclima.pdf2018_dis_crclima.pdfapplication/pdf5707581http://repositorio.ufc.br/bitstream/riufc/39661/3/2018_dis_crclima.pdf5150f68d666ee2d1156ce6aa4b0bd6a9MD53riufc/396612019-02-14 15:57:45.34oai:repositorio.ufc.br:riufc/39661Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-02-14T18:57:45Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Utilização da estatística gradiente nos modelos Hurdle
dc.title.en.pt_BR.fl_str_mv Using gradient statistics in Hurdle models
title Utilização da estatística gradiente nos modelos Hurdle
spellingShingle Utilização da estatística gradiente nos modelos Hurdle
Lima, Camila Raquel Câmara
Modelos Hurdle
Estatística Gradiente
Estatística da Razão de Verossimilhanças Generalizadas
Estatística de Wald
Estatística Escore
title_short Utilização da estatística gradiente nos modelos Hurdle
title_full Utilização da estatística gradiente nos modelos Hurdle
title_fullStr Utilização da estatística gradiente nos modelos Hurdle
title_full_unstemmed Utilização da estatística gradiente nos modelos Hurdle
title_sort Utilização da estatística gradiente nos modelos Hurdle
author Lima, Camila Raquel Câmara
author_facet Lima, Camila Raquel Câmara
author_role author
dc.contributor.co-advisor.none.fl_str_mv Nobre, Juvêncio Santos
dc.contributor.author.fl_str_mv Lima, Camila Raquel Câmara
dc.contributor.advisor1.fl_str_mv Freitas, Sílvia Maria de
contributor_str_mv Freitas, Sílvia Maria de
dc.subject.por.fl_str_mv Modelos Hurdle
Estatística Gradiente
Estatística da Razão de Verossimilhanças Generalizadas
Estatística de Wald
Estatística Escore
topic Modelos Hurdle
Estatística Gradiente
Estatística da Razão de Verossimilhanças Generalizadas
Estatística de Wald
Estatística Escore
description In many practical problems, there is an interest in modeling data from counting, such as disease incidence. In many practical problems, there is an interest in modeling data from counting, such as incidence of diseases, number of transit, among others situations of interest. In most applications involving this type of data, the Poisson and Binomial Negative distributions are used for modeling. However, the structure of the counting data may exhibit excess zeros and superdispersion, which makes modeling using such distributions undue because they do not have the flexibility to accommodate such behavior. A class of models capable of accommodating both properties (zeros excess and superdispersion) is the class of the Hurdle Models (Cameron; Trivedi, 1998, Regression analysis of count data). In this class of models, because of their complexity, it is common to use hypothesis tests based on the generalized likelihood ratio (Wilks, 1938, Annals of Mathematical Statistics), Wald (Wald, 1943, Transactions of the American Mathematical Society) and Escore (Rao, 1948, Proceedings of the Cambridge Philosophical Society). However, a new statistic has been proposed, called Gradiente (Terrel, 2002, Computing Science and Statistics) as an alternative to classical tests and has received particular attention from the statistical community due to its good properties. The present work considers the performance of the Gradient statistic in comparison to the performance of the other statistics usual in the model textit Hurdle. For this, the class of textit Hurdle models are described, their properties, inferences aspects and the main asymptotic results of the tests are presented. A Monte Carlo simulation study based on the Poisson-Binomial and Hurdle Binomial Negative Binomial models is used to evaluate the performance of the tests in finite samples and at the end of the simulation, the results to a real set of data.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-02-14T18:57:45Z
dc.date.available.fl_str_mv 2019-02-14T18:57:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Camila Raquel Câmara. Utilização da estatística gradiente nos modelos Hurdle. 241f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/39661
identifier_str_mv LIMA, Camila Raquel Câmara. Utilização da estatística gradiente nos modelos Hurdle. 241f. Dissertação (Mestrado em Modelagem e Métodos Quantitativos) - Centro de Ciências, Universidade Federal do Ceará, 2018.
url http://www.repositorio.ufc.br/handle/riufc/39661
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/39661/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/39661/3/2018_dis_crclima.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
5150f68d666ee2d1156ce6aa4b0bd6a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793124490870784