Método de log-cumulantes em processamento de imagens SAR

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rodrigues, Francisco Alixandre Ávila
Orientador(a): Medeiros, Fátima Nelsizeuma Sombra de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/22980
Resumo: Image segmentation can be applied to a broad class of different problems. However, it is not usually a simple task for Synthetic Aperture Radar (SAR) images due to the presence of speckle. Given the importance of SAR images in remote sensing problems, this thesis introduces a general and simple methodology to achieve SAR image segmentation by using the estimated roughness parameters of SAR data modeled by $G_I^0$ and $G_A^0$ distributions, instead of directly processing the speckled images. In this paper, we adopted the log-cumulants method for the roughness parameter estimation. The performance evaluation of the results was attained in terms of the Error of Segmentation and Cross-Region Fitting measures for synthetic and real SAR images, respectively. Regarding synthetic images, we performed Monte Carlo experiments which confirmed the suitability of SAR image segmentation by means of roughness parameters. The results showed that the methodology provides a feasible input to SAR image segmentation algorithms which also include thresholding based methods. Actually, the proposed approach accomplished satisfactory results for the most critical case study, the single-look images, which are markedly affected by speckle. The application of the log-cumulants method to synthetic aperture radar data processing encompasses parameter estimation of probability density functions. The good estimation performance of this method has fostered researches in SAR data modeling and processing with the $G_I^0$ distribution. Numerical methods are usually applied to estimate parameters of the $G_I^0$ distribution by log-cumulants and therefore they can result in high computational cost. Here, we propose a fast log-cumulants approach for SAR data modeled by the $G_I^0$ distribution. Experimental tests were carried out on sets of simulated and real SAR data.
id UFC-7_cf0187bd9c1aaab4445fa0dc6963db6f
oai_identifier_str oai:repositorio.ufc.br:riufc/22980
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Rodrigues, Francisco Alixandre ÁvilaMedeiros, Fátima Nelsizeuma Sombra de2017-06-02T13:05:45Z2017-06-02T13:05:45Z2017RODRIGUES, Francisco Alixandre Ávila. Método de log-cumulantes em processamento de imagens SAR. 2017. 60 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/22980Image segmentation can be applied to a broad class of different problems. However, it is not usually a simple task for Synthetic Aperture Radar (SAR) images due to the presence of speckle. Given the importance of SAR images in remote sensing problems, this thesis introduces a general and simple methodology to achieve SAR image segmentation by using the estimated roughness parameters of SAR data modeled by $G_I^0$ and $G_A^0$ distributions, instead of directly processing the speckled images. In this paper, we adopted the log-cumulants method for the roughness parameter estimation. The performance evaluation of the results was attained in terms of the Error of Segmentation and Cross-Region Fitting measures for synthetic and real SAR images, respectively. Regarding synthetic images, we performed Monte Carlo experiments which confirmed the suitability of SAR image segmentation by means of roughness parameters. The results showed that the methodology provides a feasible input to SAR image segmentation algorithms which also include thresholding based methods. Actually, the proposed approach accomplished satisfactory results for the most critical case study, the single-look images, which are markedly affected by speckle. The application of the log-cumulants method to synthetic aperture radar data processing encompasses parameter estimation of probability density functions. The good estimation performance of this method has fostered researches in SAR data modeling and processing with the $G_I^0$ distribution. Numerical methods are usually applied to estimate parameters of the $G_I^0$ distribution by log-cumulants and therefore they can result in high computational cost. Here, we propose a fast log-cumulants approach for SAR data modeled by the $G_I^0$ distribution. Experimental tests were carried out on sets of simulated and real SAR data.A segmentação de imagens é uma tarefa que pode ser aplicada a uma ampla classe de problemas em visão computacional. No entanto, não se trata de uma tarefa simples quando aplicada a imagens de Radar de Abertura Sintética (SAR) devido à presença do ruído \textit{speckle}. Dada a importância das imagens SAR em problemas de sensoriamento remoto, esta tese introduz uma metodologia geral e simples para segmentação de imagens usando os parâmetros de rugosidade estimados a partir de dados modelados pelas distribuições $G_I^0$ e $G_A^0$, em vez de processar diretamente as imagens ruidosas. Para tanto, adotamos o método log-cumulantes para a estimação de parâmetros de rugosidade. A avaliação de desempenho dos resultados foi realizada em termos das medidas de Erro de Segmentação e de \textit{Cross-Region Fitting} para imagens SAR sintéticas e reais, respectivamente. Em relação às imagens sintéticas, foram realizadas experimentos de Monte Carlo que confirmaram a adequação da segmentação da imagem SAR por meio de parâmetros de rugosidade. Os resultados mostraram que a metodologia fornece uma entrada viável para algoritmos de segmentação de imagens SAR dentre os quais se incluem métodos baseados em limiarização. Na verdade, a abordagem proposta obteve resultados satisfatórios para o estudo de caso mais crítico, que são as imagens com número de visadas igual a 1, as quais são bastante afetadas pelo \textit{speckle}. A estimação de parâmetros de funções de densidade de probabilidade usando o método log-cumulantes tem sido utilizada no processamento de imagens de radar de abertura sintética. O bom desempenho deste método tem fomentado a pesquisa em modelagem e processamento de dados SAR com a distribuição $G_I^0$ e $G_A^0$. Em geral, métodos numéricos são aplicados para estimar os parâmetros das distribuiçãos $G_I^0$ e $G_A^0$ pelo método de log-cumulantes e, portanto, podem resultar em alto custo computacional. Neste trabalho, também propomos uma abordagem rápida para o método de log-cumulantes mantendo a boa qualidade das estimativas dos parâmetros. A abordagem proposta foi aplicada a conjuntos de dados simulados e reais.TeleinformáticaVisão por computadorRadar de abertura sintéticaSensoriamento remotoMétodo de log-cumulantes em processamento de imagens SARLog-cumulating method in SAR image processinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2017_tese_faarodrigues.pdf2017_tese_faarodrigues.pdfapplication/pdf4971151http://repositorio.ufc.br/bitstream/riufc/22980/1/2017_tese_faarodrigues.pdf545e8bb6dcafe3589223fc96fefb0be8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/22980/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/229802020-08-24 12:02:01.182oai:repositorio.ufc.br:riufc/22980Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-08-24T15:02:01Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Método de log-cumulantes em processamento de imagens SAR
dc.title.en.pt_BR.fl_str_mv Log-cumulating method in SAR image processing
title Método de log-cumulantes em processamento de imagens SAR
spellingShingle Método de log-cumulantes em processamento de imagens SAR
Rodrigues, Francisco Alixandre Ávila
Teleinformática
Visão por computador
Radar de abertura sintética
Sensoriamento remoto
title_short Método de log-cumulantes em processamento de imagens SAR
title_full Método de log-cumulantes em processamento de imagens SAR
title_fullStr Método de log-cumulantes em processamento de imagens SAR
title_full_unstemmed Método de log-cumulantes em processamento de imagens SAR
title_sort Método de log-cumulantes em processamento de imagens SAR
author Rodrigues, Francisco Alixandre Ávila
author_facet Rodrigues, Francisco Alixandre Ávila
author_role author
dc.contributor.author.fl_str_mv Rodrigues, Francisco Alixandre Ávila
dc.contributor.advisor1.fl_str_mv Medeiros, Fátima Nelsizeuma Sombra de
contributor_str_mv Medeiros, Fátima Nelsizeuma Sombra de
dc.subject.por.fl_str_mv Teleinformática
Visão por computador
Radar de abertura sintética
Sensoriamento remoto
topic Teleinformática
Visão por computador
Radar de abertura sintética
Sensoriamento remoto
description Image segmentation can be applied to a broad class of different problems. However, it is not usually a simple task for Synthetic Aperture Radar (SAR) images due to the presence of speckle. Given the importance of SAR images in remote sensing problems, this thesis introduces a general and simple methodology to achieve SAR image segmentation by using the estimated roughness parameters of SAR data modeled by $G_I^0$ and $G_A^0$ distributions, instead of directly processing the speckled images. In this paper, we adopted the log-cumulants method for the roughness parameter estimation. The performance evaluation of the results was attained in terms of the Error of Segmentation and Cross-Region Fitting measures for synthetic and real SAR images, respectively. Regarding synthetic images, we performed Monte Carlo experiments which confirmed the suitability of SAR image segmentation by means of roughness parameters. The results showed that the methodology provides a feasible input to SAR image segmentation algorithms which also include thresholding based methods. Actually, the proposed approach accomplished satisfactory results for the most critical case study, the single-look images, which are markedly affected by speckle. The application of the log-cumulants method to synthetic aperture radar data processing encompasses parameter estimation of probability density functions. The good estimation performance of this method has fostered researches in SAR data modeling and processing with the $G_I^0$ distribution. Numerical methods are usually applied to estimate parameters of the $G_I^0$ distribution by log-cumulants and therefore they can result in high computational cost. Here, we propose a fast log-cumulants approach for SAR data modeled by the $G_I^0$ distribution. Experimental tests were carried out on sets of simulated and real SAR data.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-06-02T13:05:45Z
dc.date.available.fl_str_mv 2017-06-02T13:05:45Z
dc.date.issued.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, Francisco Alixandre Ávila. Método de log-cumulantes em processamento de imagens SAR. 2017. 60 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/22980
identifier_str_mv RODRIGUES, Francisco Alixandre Ávila. Método de log-cumulantes em processamento de imagens SAR. 2017. 60 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.
url http://www.repositorio.ufc.br/handle/riufc/22980
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/22980/1/2017_tese_faarodrigues.pdf
http://repositorio.ufc.br/bitstream/riufc/22980/2/license.txt
bitstream.checksum.fl_str_mv 545e8bb6dcafe3589223fc96fefb0be8
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793254014124032