Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Rocha, Renan Vieira
Orientador(a): Souza Filho, Francisco de Assis de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/59102
Resumo: The violation of the stationarity assumption in streamflow timeseries requires the development of methodologies to (1) identify the existence of changes in the series and its location, (2) incorporate this aspect in the streamflow modelling and forecasting framework and (3) analyze the full extension regarding its impact. Naturalized streamflow of the Brazilian electricity sector was used as a case study to analyze these aspects. The problem of detecting changes in the statistical properties of streamflow series is currently an open question with concerns regarding the reliability of the results of the different methodologies available. Three methodologies were used to detect changes in the mean value and the change point reliability was assessed evaluating the convergence among them. This approach showed great potential since the different methodologies presented a high convergence rate for the correct change point and a lower convergence rate for the incorrect points. The changes detected coincided to phase shift of low frequency oscillations of the Atlantic and Pacific oceans and its impact in the South Atlantic Convergence Zone. A first attempt to incorporate this non-stationarity was made using Gaussian Bayesian Networks (GBN). Discrete variables representing the different phases of low frequency oscillations were included in the networks, allowing different network parameters according to the phases. The focus on Bayesian Networks relies in recent articles that indicated Bayesian Networks as a promising tool in hydroclimate studies, simultaneously providing good modelling results and allowing causal discovery through the analysis of the network structure. The results demonstrated a great potential of the GBN to forecast streamflow with lead times from one to eight months. The results also unveiled a good streamflow forecasting potential via Bayesian Inference based on Likelihood Weighting simulations. The use of the phases resulted in the performance improvement for some stations, however, it did not improve the results of the stations that presented changes in the timeseries, suggesting significant changes between the network structures of each homogeneous periods. Network structures were obtained through different methodologies for each homogeneous period to analyze this aspect. The results confirmed the initial hypothesis, showing significant differences between the network structures of each homogeneous periods, with alterations in the relationship between the variables and in its autocorrelation function. Therefore, the use of the same set of parents for the complete series may not comprise the extension of the changes observed. Finally, an analysis was made to evaluate the non-stationarity impact in the relationship between the streamflow series, this aspect is important in the generation of spatially coherent streamflow forecasts. A framework was proposed to obtain weighted complex networks between the stations, using network science theory to detect and analyze changes in the clustering results. The results showed significant changes in the clustering results across time, demonstrating the necessity of a more complex approach to correct correlate the streamflow forecasts. The use of a correlation matrix for each homogeneous phase could be a viable solution since similarities were found between the changes in the mean value and in the relationship between the stations.
id UFC-7_d5664c593889f48fa97d548152aa01d2
oai_identifier_str oai:repositorio.ufc.br:riufc/59102
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Rocha, Renan VieiraSouza Filho, Francisco de Assis de2021-06-21T10:57:24Z2021-06-21T10:57:24Z2021ROCHA, Renan Vieira. Bayesian Networks and network science applied to water resources: streamflow analysis andforecasting incorporating the non-stationarity. 2021. 174 f. Tese (Doutorado em Engenharia Civil: Recursos Hídricos) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Recursos Hídricos, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/59102The violation of the stationarity assumption in streamflow timeseries requires the development of methodologies to (1) identify the existence of changes in the series and its location, (2) incorporate this aspect in the streamflow modelling and forecasting framework and (3) analyze the full extension regarding its impact. Naturalized streamflow of the Brazilian electricity sector was used as a case study to analyze these aspects. The problem of detecting changes in the statistical properties of streamflow series is currently an open question with concerns regarding the reliability of the results of the different methodologies available. Three methodologies were used to detect changes in the mean value and the change point reliability was assessed evaluating the convergence among them. This approach showed great potential since the different methodologies presented a high convergence rate for the correct change point and a lower convergence rate for the incorrect points. The changes detected coincided to phase shift of low frequency oscillations of the Atlantic and Pacific oceans and its impact in the South Atlantic Convergence Zone. A first attempt to incorporate this non-stationarity was made using Gaussian Bayesian Networks (GBN). Discrete variables representing the different phases of low frequency oscillations were included in the networks, allowing different network parameters according to the phases. The focus on Bayesian Networks relies in recent articles that indicated Bayesian Networks as a promising tool in hydroclimate studies, simultaneously providing good modelling results and allowing causal discovery through the analysis of the network structure. The results demonstrated a great potential of the GBN to forecast streamflow with lead times from one to eight months. The results also unveiled a good streamflow forecasting potential via Bayesian Inference based on Likelihood Weighting simulations. The use of the phases resulted in the performance improvement for some stations, however, it did not improve the results of the stations that presented changes in the timeseries, suggesting significant changes between the network structures of each homogeneous periods. Network structures were obtained through different methodologies for each homogeneous period to analyze this aspect. The results confirmed the initial hypothesis, showing significant differences between the network structures of each homogeneous periods, with alterations in the relationship between the variables and in its autocorrelation function. Therefore, the use of the same set of parents for the complete series may not comprise the extension of the changes observed. Finally, an analysis was made to evaluate the non-stationarity impact in the relationship between the streamflow series, this aspect is important in the generation of spatially coherent streamflow forecasts. A framework was proposed to obtain weighted complex networks between the stations, using network science theory to detect and analyze changes in the clustering results. The results showed significant changes in the clustering results across time, demonstrating the necessity of a more complex approach to correct correlate the streamflow forecasts. The use of a correlation matrix for each homogeneous phase could be a viable solution since similarities were found between the changes in the mean value and in the relationship between the stations.CAPESA violação da premissa de estacionariedade em séries temporais de vazão impõe o desenvolvimento de metodologias para (1) identificar a existência de mudanças nas séries e sua localização, (2) incorporar esse aspecto na modelagem e previsão de vazões e (3) analisar a extensão do impacto da não-estacionariedade. Esses aspectos foram analisados utilizando como estudo de caso as vazões naturalizados do setor elétrico brasileiro. O problema de detecção de mudanças nas propriedades estatísticas das séries de vazão é uma lacuna da literatura atual com preocupações acerca da confiabilidade dos resultados das diferentes metodologias disponíveis. Três metodologias foram utilizadas para detectar mudanças na média, utilizando a convergência das metodologias para analisar a confiabilidade dos resultados. Essa abordagem demonstrou um grande potencial, visto que as diferentes metodologias apresentaram uma alta taxa de convergência para o ponto de mudança correto e uma taxa menor para os pontos incorretos. As mudanças detectadas coincidiram com mudanças de fase de oscilações de baixa frequência dos oceanos Atlântico e Pacífico, podendo ser associadas a seus impactos na Zona de Convergência do Atlântico Sul. Uma primeira tentativa de incorporar essa não-estacionariedade foi realizada utilizando Redes Bayesianas Gaussianas (GBN), incluindo nas redes variáveis discretas representando as diferentes fases de oscilações de baixa frequência, permitindo diferentes parâmetros de rede de acordo com as fases. O foco em Redes Bayesianas derivou de artigos recentes que apontaram as Redes Bayesianas como uma ferramenta promissora em estudos hidroclimáticos, simultaneamente fornecendo bons resultados para modelagem e possibilitando uma descoberta causal através da análise da estrutura da rede. Os resultados demonstraram um grande potencial da GBN para prever vazões com um a oito meses de antecedência. Os resultados também revelaram uma boa performance da previsão de vazão via Inferência Bayesiana (Likelihood Weighting simulations). O uso das fases resultou na melhoria da performance para algumas estações, porém, não resultou em uma melhora para as estações que apresentaram mudança nas séries, indicando modificações significativas entre as estruturas de rede de cada período homogêneo. Esse aspecto foi analisado obtendo uma estrutura de rede para cada período homogêneo via diferentes metodologias. Os resultados corroboraram a suposição inicial, indicando profundas diferenças entre as estruturas de rede de cada período homogêneo, com alterações nas relações entre as variáveis e nas suas funções de autocorrelação. Portanto, a utilização do mesmo conjunto de parents para a série completa pode não compreender a extensão das alterações observadas. Finalmente, o impacto da nãoestacionariedade na relação entre as séries de vazão foi analisado, este aspecto é importante na geração de previsões espacialmente correlacionadas. Uma metodologia para obtenção de redes complexas ponderadas entre as estações foi proposta, utilizando a teoria da ciência de redes para detectar e analisar mudanças nos resultados de agrupamento. Foram observadas mudanças nos agrupamentos ao longo do tempo demonstrando a necessidade de uma abordagem mais complexa para correlacionar corretamente as previsões. A utilização de uma matriz de correlação para cada fase homogênea pode ser uma solução viável visto que foram encontradas semelhanças entre as mudanças no valor médio e na relação entre as séries.Previsão de vazõesDetecção de ponto de mudançaRedes gaussianasRedes bayesianas dinâmicasRedes complexasCiência de redesBaixa frequênciaBayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_tese_rvrocha.pdf2021_tese_rvrocha.pdfTese de Renan Vieira Rochaapplication/pdf18022895http://repositorio.ufc.br/bitstream/riufc/59102/1/2021_tese_rvrocha.pdf190901fc58b9519054ea48a6bd2a1c2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/59102/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/591022022-11-18 15:42:23.762oai:repositorio.ufc.br:riufc/59102Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-11-18T18:42:23Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
title Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
spellingShingle Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
Rocha, Renan Vieira
Previsão de vazões
Detecção de ponto de mudança
Redes gaussianas
Redes bayesianas dinâmicas
Redes complexas
Ciência de redes
Baixa frequência
title_short Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
title_full Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
title_fullStr Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
title_full_unstemmed Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
title_sort Bayesian networks and network science applied to water resources: streamflow analysis and forecast incorporating the non-stationarity
author Rocha, Renan Vieira
author_facet Rocha, Renan Vieira
author_role author
dc.contributor.author.fl_str_mv Rocha, Renan Vieira
dc.contributor.advisor1.fl_str_mv Souza Filho, Francisco de Assis de
contributor_str_mv Souza Filho, Francisco de Assis de
dc.subject.por.fl_str_mv Previsão de vazões
Detecção de ponto de mudança
Redes gaussianas
Redes bayesianas dinâmicas
Redes complexas
Ciência de redes
Baixa frequência
topic Previsão de vazões
Detecção de ponto de mudança
Redes gaussianas
Redes bayesianas dinâmicas
Redes complexas
Ciência de redes
Baixa frequência
description The violation of the stationarity assumption in streamflow timeseries requires the development of methodologies to (1) identify the existence of changes in the series and its location, (2) incorporate this aspect in the streamflow modelling and forecasting framework and (3) analyze the full extension regarding its impact. Naturalized streamflow of the Brazilian electricity sector was used as a case study to analyze these aspects. The problem of detecting changes in the statistical properties of streamflow series is currently an open question with concerns regarding the reliability of the results of the different methodologies available. Three methodologies were used to detect changes in the mean value and the change point reliability was assessed evaluating the convergence among them. This approach showed great potential since the different methodologies presented a high convergence rate for the correct change point and a lower convergence rate for the incorrect points. The changes detected coincided to phase shift of low frequency oscillations of the Atlantic and Pacific oceans and its impact in the South Atlantic Convergence Zone. A first attempt to incorporate this non-stationarity was made using Gaussian Bayesian Networks (GBN). Discrete variables representing the different phases of low frequency oscillations were included in the networks, allowing different network parameters according to the phases. The focus on Bayesian Networks relies in recent articles that indicated Bayesian Networks as a promising tool in hydroclimate studies, simultaneously providing good modelling results and allowing causal discovery through the analysis of the network structure. The results demonstrated a great potential of the GBN to forecast streamflow with lead times from one to eight months. The results also unveiled a good streamflow forecasting potential via Bayesian Inference based on Likelihood Weighting simulations. The use of the phases resulted in the performance improvement for some stations, however, it did not improve the results of the stations that presented changes in the timeseries, suggesting significant changes between the network structures of each homogeneous periods. Network structures were obtained through different methodologies for each homogeneous period to analyze this aspect. The results confirmed the initial hypothesis, showing significant differences between the network structures of each homogeneous periods, with alterations in the relationship between the variables and in its autocorrelation function. Therefore, the use of the same set of parents for the complete series may not comprise the extension of the changes observed. Finally, an analysis was made to evaluate the non-stationarity impact in the relationship between the streamflow series, this aspect is important in the generation of spatially coherent streamflow forecasts. A framework was proposed to obtain weighted complex networks between the stations, using network science theory to detect and analyze changes in the clustering results. The results showed significant changes in the clustering results across time, demonstrating the necessity of a more complex approach to correct correlate the streamflow forecasts. The use of a correlation matrix for each homogeneous phase could be a viable solution since similarities were found between the changes in the mean value and in the relationship between the stations.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-06-21T10:57:24Z
dc.date.available.fl_str_mv 2021-06-21T10:57:24Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA, Renan Vieira. Bayesian Networks and network science applied to water resources: streamflow analysis andforecasting incorporating the non-stationarity. 2021. 174 f. Tese (Doutorado em Engenharia Civil: Recursos Hídricos) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Recursos Hídricos, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/59102
identifier_str_mv ROCHA, Renan Vieira. Bayesian Networks and network science applied to water resources: streamflow analysis andforecasting incorporating the non-stationarity. 2021. 174 f. Tese (Doutorado em Engenharia Civil: Recursos Hídricos) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Recursos Hídricos, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/59102
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/59102/1/2021_tese_rvrocha.pdf
http://repositorio.ufc.br/bitstream/riufc/59102/2/license.txt
bitstream.checksum.fl_str_mv 190901fc58b9519054ea48a6bd2a1c2c
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793376127090688