Buraco negro de Kerr e quintessência

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Brito, Nicolas Carvalho de
Orientador(a): Alencar Filho, Geová Maciel de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/38700
Resumo: The present work starts by presenting a concise derivation of the Einstein’s field equations. After, we focus our attention on the static and spherically symmetric exact solutions of the Einstein equations, expliciting the two more basic solutions, which are the Schwarzschild solution and the Reissner-Nordstrom solution. We finish this part by presenting the concept of quintessense and by deriving the solution with quintessence. In turn, we present an algorithm, due to Ezra T. Newman and Allen I. Janis, best known as Newman-Janis ‘trick’, which allows us to obtain the Kerr solution, which represents gravitational fields due to a rotating body, from some algebraic manipulation. Possessing the Kerr solution in the presense of quintessence, we analize some properties of the solution and try to show the influence of the quintessence on rotating black holes, which can be extracted from the Kerr Solution. There are a lot of works on rotating black holes and quintessence, but none of them present in a detailed manner the algebraic development, what is one of the reasons why finding the Kerr solution is só hard and uncertain, mainly because there is no agreement about the validity and basis of the Newman-Janis algorithm, that’s why the main goal of this work is presenting, when possible, in a detailed manner, the steps from the basic principles of the General Theory of Relativity to the solution that describes a rotating black hole and present the influence of quintessence on these objects.
id UFC-7_d6d1ffbda5f6814a22544504df4e9fbd
oai_identifier_str oai:repositorio.ufc.br:riufc/38700
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Brito, Nicolas Carvalho deMuniz, Célio RodriguesAlencar Filho, Geová Maciel de2019-01-07T14:30:15Z2019-01-07T14:30:15Z2018BRITO, N. C. Buraco negro de Kerr e quintessência. 2018. 65 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/38700The present work starts by presenting a concise derivation of the Einstein’s field equations. After, we focus our attention on the static and spherically symmetric exact solutions of the Einstein equations, expliciting the two more basic solutions, which are the Schwarzschild solution and the Reissner-Nordstrom solution. We finish this part by presenting the concept of quintessense and by deriving the solution with quintessence. In turn, we present an algorithm, due to Ezra T. Newman and Allen I. Janis, best known as Newman-Janis ‘trick’, which allows us to obtain the Kerr solution, which represents gravitational fields due to a rotating body, from some algebraic manipulation. Possessing the Kerr solution in the presense of quintessence, we analize some properties of the solution and try to show the influence of the quintessence on rotating black holes, which can be extracted from the Kerr Solution. There are a lot of works on rotating black holes and quintessence, but none of them present in a detailed manner the algebraic development, what is one of the reasons why finding the Kerr solution is só hard and uncertain, mainly because there is no agreement about the validity and basis of the Newman-Janis algorithm, that’s why the main goal of this work is presenting, when possible, in a detailed manner, the steps from the basic principles of the General Theory of Relativity to the solution that describes a rotating black hole and present the influence of quintessence on these objects.O presente trabalho inicia-se com a apresentação de uma concisa derivação das equações de Einstein da gravitação. A partir desse ponto, direciona-se a atenção às soluções estáticas e esfericamente simétricas dessas equações, onde apresenta-se as soluções de Schwarzschild e Reissner-Nordstrom. Essa parte é concluıdıa com a apresentação do conceito de Quintessência e com a obtenção da solução com Quintessência. Em seguida, Apresenta-se um algorıtımo, devido a Ezra T. Newman e Allen I. Janis, conhecido como“truque”de Newman-Janis, que possibilita a obtenção da solução de Kerr, a qual representa campos gravitacionais devidos a um objeto em rotação, a partir de alguns artifícios algébricos. Com a solução de Kerr na presença de Quintessência, analisa-se algumas propriedades dessa solução e destaca-se a influência da Quintessência sobre Buracos negros rotativos, que são consequência direta da Solução de Kerr. Existem muitos trabalhos sobre buracos negros rotativos com Quintessência, mas nenhum deles detalha o desenvolvimento algébrico, o que torna o caminho até a solução de Kerr muito árduo e incerto, principalmente por não haver consenso sobre a validade e os fundamentos do algoritmo de Newman-Janis, por isso, o principal objetivo deste estudo é apresentar, na medida do possível, de forma detalhada, o caminho que leva dos princípios básicos da Relatividade Geral até a solução que descreve um buraco negro rotativo e apresentar a influência da Quintessência sobre esses objetos.Solução de SchwarzschildQuintessênciaAlgoritmo de Newman-JanisSolução de KerrBuraco negro de Kerr e quintessênciainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_dis_ncbrito.pdf2018_dis_ncbrito.pdfapplication/pdf743362http://repositorio.ufc.br/bitstream/riufc/38700/1/2018_dis_ncbrito.pdfbd95835a1ec3c7b1a01c7bdff3d5e69fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/38700/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/387002023-03-31 11:52:12.437oai:repositorio.ufc.br:riufc/38700Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-03-31T14:52:12Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Buraco negro de Kerr e quintessência
title Buraco negro de Kerr e quintessência
spellingShingle Buraco negro de Kerr e quintessência
Brito, Nicolas Carvalho de
Solução de Schwarzschild
Quintessência
Algoritmo de Newman-Janis
Solução de Kerr
title_short Buraco negro de Kerr e quintessência
title_full Buraco negro de Kerr e quintessência
title_fullStr Buraco negro de Kerr e quintessência
title_full_unstemmed Buraco negro de Kerr e quintessência
title_sort Buraco negro de Kerr e quintessência
author Brito, Nicolas Carvalho de
author_facet Brito, Nicolas Carvalho de
author_role author
dc.contributor.co-advisor.none.fl_str_mv Muniz, Célio Rodrigues
dc.contributor.author.fl_str_mv Brito, Nicolas Carvalho de
dc.contributor.advisor1.fl_str_mv Alencar Filho, Geová Maciel de
contributor_str_mv Alencar Filho, Geová Maciel de
dc.subject.por.fl_str_mv Solução de Schwarzschild
Quintessência
Algoritmo de Newman-Janis
Solução de Kerr
topic Solução de Schwarzschild
Quintessência
Algoritmo de Newman-Janis
Solução de Kerr
description The present work starts by presenting a concise derivation of the Einstein’s field equations. After, we focus our attention on the static and spherically symmetric exact solutions of the Einstein equations, expliciting the two more basic solutions, which are the Schwarzschild solution and the Reissner-Nordstrom solution. We finish this part by presenting the concept of quintessense and by deriving the solution with quintessence. In turn, we present an algorithm, due to Ezra T. Newman and Allen I. Janis, best known as Newman-Janis ‘trick’, which allows us to obtain the Kerr solution, which represents gravitational fields due to a rotating body, from some algebraic manipulation. Possessing the Kerr solution in the presense of quintessence, we analize some properties of the solution and try to show the influence of the quintessence on rotating black holes, which can be extracted from the Kerr Solution. There are a lot of works on rotating black holes and quintessence, but none of them present in a detailed manner the algebraic development, what is one of the reasons why finding the Kerr solution is só hard and uncertain, mainly because there is no agreement about the validity and basis of the Newman-Janis algorithm, that’s why the main goal of this work is presenting, when possible, in a detailed manner, the steps from the basic principles of the General Theory of Relativity to the solution that describes a rotating black hole and present the influence of quintessence on these objects.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-01-07T14:30:15Z
dc.date.available.fl_str_mv 2019-01-07T14:30:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRITO, N. C. Buraco negro de Kerr e quintessência. 2018. 65 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/38700
identifier_str_mv BRITO, N. C. Buraco negro de Kerr e quintessência. 2018. 65 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/38700
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/38700/1/2018_dis_ncbrito.pdf
http://repositorio.ufc.br/bitstream/riufc/38700/2/license.txt
bitstream.checksum.fl_str_mv bd95835a1ec3c7b1a01c7bdff3d5e69f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792962234220544