Buraco negro de Kerr e quintessência
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/38700 |
Resumo: | The present work starts by presenting a concise derivation of the Einstein’s field equations. After, we focus our attention on the static and spherically symmetric exact solutions of the Einstein equations, expliciting the two more basic solutions, which are the Schwarzschild solution and the Reissner-Nordstrom solution. We finish this part by presenting the concept of quintessense and by deriving the solution with quintessence. In turn, we present an algorithm, due to Ezra T. Newman and Allen I. Janis, best known as Newman-Janis ‘trick’, which allows us to obtain the Kerr solution, which represents gravitational fields due to a rotating body, from some algebraic manipulation. Possessing the Kerr solution in the presense of quintessence, we analize some properties of the solution and try to show the influence of the quintessence on rotating black holes, which can be extracted from the Kerr Solution. There are a lot of works on rotating black holes and quintessence, but none of them present in a detailed manner the algebraic development, what is one of the reasons why finding the Kerr solution is só hard and uncertain, mainly because there is no agreement about the validity and basis of the Newman-Janis algorithm, that’s why the main goal of this work is presenting, when possible, in a detailed manner, the steps from the basic principles of the General Theory of Relativity to the solution that describes a rotating black hole and present the influence of quintessence on these objects. |
| id |
UFC-7_d6d1ffbda5f6814a22544504df4e9fbd |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/38700 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Brito, Nicolas Carvalho deMuniz, Célio RodriguesAlencar Filho, Geová Maciel de2019-01-07T14:30:15Z2019-01-07T14:30:15Z2018BRITO, N. C. Buraco negro de Kerr e quintessência. 2018. 65 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/38700The present work starts by presenting a concise derivation of the Einstein’s field equations. After, we focus our attention on the static and spherically symmetric exact solutions of the Einstein equations, expliciting the two more basic solutions, which are the Schwarzschild solution and the Reissner-Nordstrom solution. We finish this part by presenting the concept of quintessense and by deriving the solution with quintessence. In turn, we present an algorithm, due to Ezra T. Newman and Allen I. Janis, best known as Newman-Janis ‘trick’, which allows us to obtain the Kerr solution, which represents gravitational fields due to a rotating body, from some algebraic manipulation. Possessing the Kerr solution in the presense of quintessence, we analize some properties of the solution and try to show the influence of the quintessence on rotating black holes, which can be extracted from the Kerr Solution. There are a lot of works on rotating black holes and quintessence, but none of them present in a detailed manner the algebraic development, what is one of the reasons why finding the Kerr solution is só hard and uncertain, mainly because there is no agreement about the validity and basis of the Newman-Janis algorithm, that’s why the main goal of this work is presenting, when possible, in a detailed manner, the steps from the basic principles of the General Theory of Relativity to the solution that describes a rotating black hole and present the influence of quintessence on these objects.O presente trabalho inicia-se com a apresentação de uma concisa derivação das equações de Einstein da gravitação. A partir desse ponto, direciona-se a atenção às soluções estáticas e esfericamente simétricas dessas equações, onde apresenta-se as soluções de Schwarzschild e Reissner-Nordstrom. Essa parte é concluıdıa com a apresentação do conceito de Quintessência e com a obtenção da solução com Quintessência. Em seguida, Apresenta-se um algorıtımo, devido a Ezra T. Newman e Allen I. Janis, conhecido como“truque”de Newman-Janis, que possibilita a obtenção da solução de Kerr, a qual representa campos gravitacionais devidos a um objeto em rotação, a partir de alguns artifícios algébricos. Com a solução de Kerr na presença de Quintessência, analisa-se algumas propriedades dessa solução e destaca-se a influência da Quintessência sobre Buracos negros rotativos, que são consequência direta da Solução de Kerr. Existem muitos trabalhos sobre buracos negros rotativos com Quintessência, mas nenhum deles detalha o desenvolvimento algébrico, o que torna o caminho até a solução de Kerr muito árduo e incerto, principalmente por não haver consenso sobre a validade e os fundamentos do algoritmo de Newman-Janis, por isso, o principal objetivo deste estudo é apresentar, na medida do possível, de forma detalhada, o caminho que leva dos princípios básicos da Relatividade Geral até a solução que descreve um buraco negro rotativo e apresentar a influência da Quintessência sobre esses objetos.Solução de SchwarzschildQuintessênciaAlgoritmo de Newman-JanisSolução de KerrBuraco negro de Kerr e quintessênciainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_dis_ncbrito.pdf2018_dis_ncbrito.pdfapplication/pdf743362http://repositorio.ufc.br/bitstream/riufc/38700/1/2018_dis_ncbrito.pdfbd95835a1ec3c7b1a01c7bdff3d5e69fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/38700/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/387002023-03-31 11:52:12.437oai:repositorio.ufc.br:riufc/38700Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-03-31T14:52:12Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Buraco negro de Kerr e quintessência |
| title |
Buraco negro de Kerr e quintessência |
| spellingShingle |
Buraco negro de Kerr e quintessência Brito, Nicolas Carvalho de Solução de Schwarzschild Quintessência Algoritmo de Newman-Janis Solução de Kerr |
| title_short |
Buraco negro de Kerr e quintessência |
| title_full |
Buraco negro de Kerr e quintessência |
| title_fullStr |
Buraco negro de Kerr e quintessência |
| title_full_unstemmed |
Buraco negro de Kerr e quintessência |
| title_sort |
Buraco negro de Kerr e quintessência |
| author |
Brito, Nicolas Carvalho de |
| author_facet |
Brito, Nicolas Carvalho de |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Muniz, Célio Rodrigues |
| dc.contributor.author.fl_str_mv |
Brito, Nicolas Carvalho de |
| dc.contributor.advisor1.fl_str_mv |
Alencar Filho, Geová Maciel de |
| contributor_str_mv |
Alencar Filho, Geová Maciel de |
| dc.subject.por.fl_str_mv |
Solução de Schwarzschild Quintessência Algoritmo de Newman-Janis Solução de Kerr |
| topic |
Solução de Schwarzschild Quintessência Algoritmo de Newman-Janis Solução de Kerr |
| description |
The present work starts by presenting a concise derivation of the Einstein’s field equations. After, we focus our attention on the static and spherically symmetric exact solutions of the Einstein equations, expliciting the two more basic solutions, which are the Schwarzschild solution and the Reissner-Nordstrom solution. We finish this part by presenting the concept of quintessense and by deriving the solution with quintessence. In turn, we present an algorithm, due to Ezra T. Newman and Allen I. Janis, best known as Newman-Janis ‘trick’, which allows us to obtain the Kerr solution, which represents gravitational fields due to a rotating body, from some algebraic manipulation. Possessing the Kerr solution in the presense of quintessence, we analize some properties of the solution and try to show the influence of the quintessence on rotating black holes, which can be extracted from the Kerr Solution. There are a lot of works on rotating black holes and quintessence, but none of them present in a detailed manner the algebraic development, what is one of the reasons why finding the Kerr solution is só hard and uncertain, mainly because there is no agreement about the validity and basis of the Newman-Janis algorithm, that’s why the main goal of this work is presenting, when possible, in a detailed manner, the steps from the basic principles of the General Theory of Relativity to the solution that describes a rotating black hole and present the influence of quintessence on these objects. |
| publishDate |
2018 |
| dc.date.issued.fl_str_mv |
2018 |
| dc.date.accessioned.fl_str_mv |
2019-01-07T14:30:15Z |
| dc.date.available.fl_str_mv |
2019-01-07T14:30:15Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
BRITO, N. C. Buraco negro de Kerr e quintessência. 2018. 65 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/38700 |
| identifier_str_mv |
BRITO, N. C. Buraco negro de Kerr e quintessência. 2018. 65 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. |
| url |
http://www.repositorio.ufc.br/handle/riufc/38700 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/38700/1/2018_dis_ncbrito.pdf http://repositorio.ufc.br/bitstream/riufc/38700/2/license.txt |
| bitstream.checksum.fl_str_mv |
bd95835a1ec3c7b1a01c7bdff3d5e69f 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792962234220544 |