Avaliação da frequência cardíaca fetal baseada em métricas não-lineares

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Zacarias, Henriques Mateus Joaquim
Orientador(a): Cavalcante, Charles Casimiro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/21128
Resumo: Gestation is a period of countless physiologic modifications to adapt the maternal organism to the fetal formation demands and development. The continuous monitoring of maternal and fetal biological signs through Cardiotocography (CTG) allows their evaluation as a source of aid to medical diagnosis. The present work presents a group of researches accomplished over fetal signals, starting from the CTG tests, aiming at evaluating the behavior of the Fetal Heart Rate (FHR), using non-linear tools, seeking the subsequent addition of the proposed metrics already developed multparametric system for evaluation of fetal health condition. The used non-linear metrics are the approximated entropy (ApEn), sample entropy (SampEn), multi-scale entropy (MSE) and the DFA (Detrended Fluctuation Analysis). The results were obtained using a database classified previously by the medical team of the Germany company TriumGmBH. The database, identified as CTG-A, presents 39 CTG record in antepartum phase, with gestation periods varying from 28 to 34 weeks, divided in 5 different classes: Normal, High variation, self-similar, deceleration and High sample windows. The entropy values were analyzed for two different sizes of samples windows, being the first with 1200 samples and the second with 2400 samples. Concerning DFA, the window widths were varied for the computing of the scaling exponents alpha1 and alpha2. First k=1:3 and k =4:6 and second k=1:5 and k=5:10, respectively. When evaluating the behavior of the applied entropies, it was observed that ApEn, either used in an isolated way, either used as a tool for MSE, presents the highest sensibility to the signal time variations and long term variability. When ApEn and SampEn, are compared both present a similar behavior, just differing in the intensities of the variations registered for detection of changes in the original signal. The process of adjust window width, can provide relevant results for the detection of the signal complexity decreasing of the signal when repetitive patterns occur through FHR signal, which can indicate pathologies. Finally, the DFA analysis allows to characterize the degree of self-similarity of the analyzed signal. According to the detained results all of the analyzed records present different levels of self-similarity, which can characterize a classification of the evaluated signal. The results allow to conclude that combine different approaches more efficient than apply each one individually and all of them can be considered as viable metrics for a better characterization of the fetal signals for aid to medical diagnosis.
id UFC-7_eb8f36878e9e7e917a50d83af1ef6af4
oai_identifier_str oai:repositorio.ufc.br:riufc/21128
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Zacarias, Henriques Mateus JoaquimCortez, Paulo CésarCavalcante, Charles Casimiro2016-11-21T14:03:10Z2016-11-21T14:03:10Z2015ZACARIAS, Henriques Mateus Joaquim. Avaliação da frequência cardíaca fetal baseada em métricas não-lineares. 2015. 80 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.http://www.repositorio.ufc.br/handle/riufc/21128Gestation is a period of countless physiologic modifications to adapt the maternal organism to the fetal formation demands and development. The continuous monitoring of maternal and fetal biological signs through Cardiotocography (CTG) allows their evaluation as a source of aid to medical diagnosis. The present work presents a group of researches accomplished over fetal signals, starting from the CTG tests, aiming at evaluating the behavior of the Fetal Heart Rate (FHR), using non-linear tools, seeking the subsequent addition of the proposed metrics already developed multparametric system for evaluation of fetal health condition. The used non-linear metrics are the approximated entropy (ApEn), sample entropy (SampEn), multi-scale entropy (MSE) and the DFA (Detrended Fluctuation Analysis). The results were obtained using a database classified previously by the medical team of the Germany company TriumGmBH. The database, identified as CTG-A, presents 39 CTG record in antepartum phase, with gestation periods varying from 28 to 34 weeks, divided in 5 different classes: Normal, High variation, self-similar, deceleration and High sample windows. The entropy values were analyzed for two different sizes of samples windows, being the first with 1200 samples and the second with 2400 samples. Concerning DFA, the window widths were varied for the computing of the scaling exponents alpha1 and alpha2. First k=1:3 and k =4:6 and second k=1:5 and k=5:10, respectively. When evaluating the behavior of the applied entropies, it was observed that ApEn, either used in an isolated way, either used as a tool for MSE, presents the highest sensibility to the signal time variations and long term variability. When ApEn and SampEn, are compared both present a similar behavior, just differing in the intensities of the variations registered for detection of changes in the original signal. The process of adjust window width, can provide relevant results for the detection of the signal complexity decreasing of the signal when repetitive patterns occur through FHR signal, which can indicate pathologies. Finally, the DFA analysis allows to characterize the degree of self-similarity of the analyzed signal. According to the detained results all of the analyzed records present different levels of self-similarity, which can characterize a classification of the evaluated signal. The results allow to conclude that combine different approaches more efficient than apply each one individually and all of them can be considered as viable metrics for a better characterization of the fetal signals for aid to medical diagnosis.A gestação é um período de inúmeras modificações fisiológicas para adequar o organismo materno às exigências de formação e desenvolvimento fetal. O monitoramento contínuo de sinais biológicos maternos e fetais por meio da Cardiotocografia (CTG) permite sua avaliação como fonte de auxílio ao diagnóstico médico. O presente trabalho apresenta um conjunto de pesquisas realizadas sinais fetais, a partir do exame de CTG, com o objetivo de avaliar o comportamento da Frequência Cardíaca Fetal (FCF), usando ferramentas não-lineares, visando à posterior adição ao sistema multiparamétrico já existente para a avaliação do estado de saúde fetal. As métricas não-lineares utilizadas são: entropia aproximada (ApEn), entrropia amostral (SampEn),entropia multiescala (MSE), e a DFA (Detrended Fluctuation Analysis).Os resultados foram obtidos utilizando-se uma base de dados previamente classificada pela equipe médica da empresa Trium GmBHda Alemanha. A base, identificada como CTG-A, possui 39 exames com a FCF e as UC em fase anteparto, com períodos gestacionais variando de 28 a 34 semanas, divididos em 5 diferentes classes: Normal, Alta variação, autossimilar, Bradicardia e Altas Desacelerações. Analisaram-se os valores das entropias para duas janelas diferentes de amostras, sendo a primeira com 1200 amostras (5 minutos) e a segunda com 2400 amostras (10 minutos). Já para a DFA, variou-se o tamanho das janelas para cálculo dos expoentes de escalonamentoalpha1 e alpha2, sendo primeiro k=1:3 e k=4:10e posteriormente k=1:5 e k =5:10respectivamente. Ao avaliar o comportamento das entropias, observou-se que a ApEn, quer utilizada de forma isolada, quer utilizada como base para a MSE, apresenta maior sensibilidade às variações temporais do sinal e sua variabilidade de longo prazo. Ao comparar-se diretamente a ApEn com a SampEn, ambas apresentaram comportamento similar, com diferenças nas intensidades das variações registradas para detecção de alterações no sinal original. O processo de variação da janela de amostras pode apresentar resultados relevantes para detectar a queda na complexidade do sinal quando ocorrem padrões repetitivos na FCF, que podem ser patológicos. Por fim, a análise da DFA permite caracterizar o grau de autossimilaridade do sinal, possiblitando a observação de todos os exames analisados possuem características de autossimilaridade em alguma faixa, o que pode caracterizar uma classificação do sinal avaliado. Os resultados obtidos permitem concluir que as abordagens em conjunto são mais eficientes do que aplicadas separadamente, e podem ser consideradas como métricas viáveis para uma melhor caracterização dos sinais fetais em sistemas de apoio ao diagnóstico.TeleinformáticaCardiotocografiaFrequência cardíacaEntropiaAvaliação da frequência cardíaca fetal baseada em métricas não-linearesEvaluation of fetal heart rate based on nonlinear metricsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2015_dis_hmjzacarias.pdf2015_dis_hmjzacarias.pdfapplication/pdf2818236http://repositorio.ufc.br/bitstream/riufc/21128/1/2015_dis_hmjzacarias.pdfc5148c402bf1695b41989a09294944f7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/21128/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/211282021-07-28 09:00:46.266oai:repositorio.ufc.br:riufc/21128Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-07-28T12:00:46Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
dc.title.en.pt_BR.fl_str_mv Evaluation of fetal heart rate based on nonlinear metrics
title Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
spellingShingle Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
Zacarias, Henriques Mateus Joaquim
Teleinformática
Cardiotocografia
Frequência cardíaca
Entropia
title_short Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
title_full Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
title_fullStr Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
title_full_unstemmed Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
title_sort Avaliação da frequência cardíaca fetal baseada em métricas não-lineares
author Zacarias, Henriques Mateus Joaquim
author_facet Zacarias, Henriques Mateus Joaquim
author_role author
dc.contributor.co-advisor.none.fl_str_mv Cortez, Paulo César
dc.contributor.author.fl_str_mv Zacarias, Henriques Mateus Joaquim
dc.contributor.advisor1.fl_str_mv Cavalcante, Charles Casimiro
contributor_str_mv Cavalcante, Charles Casimiro
dc.subject.por.fl_str_mv Teleinformática
Cardiotocografia
Frequência cardíaca
Entropia
topic Teleinformática
Cardiotocografia
Frequência cardíaca
Entropia
description Gestation is a period of countless physiologic modifications to adapt the maternal organism to the fetal formation demands and development. The continuous monitoring of maternal and fetal biological signs through Cardiotocography (CTG) allows their evaluation as a source of aid to medical diagnosis. The present work presents a group of researches accomplished over fetal signals, starting from the CTG tests, aiming at evaluating the behavior of the Fetal Heart Rate (FHR), using non-linear tools, seeking the subsequent addition of the proposed metrics already developed multparametric system for evaluation of fetal health condition. The used non-linear metrics are the approximated entropy (ApEn), sample entropy (SampEn), multi-scale entropy (MSE) and the DFA (Detrended Fluctuation Analysis). The results were obtained using a database classified previously by the medical team of the Germany company TriumGmBH. The database, identified as CTG-A, presents 39 CTG record in antepartum phase, with gestation periods varying from 28 to 34 weeks, divided in 5 different classes: Normal, High variation, self-similar, deceleration and High sample windows. The entropy values were analyzed for two different sizes of samples windows, being the first with 1200 samples and the second with 2400 samples. Concerning DFA, the window widths were varied for the computing of the scaling exponents alpha1 and alpha2. First k=1:3 and k =4:6 and second k=1:5 and k=5:10, respectively. When evaluating the behavior of the applied entropies, it was observed that ApEn, either used in an isolated way, either used as a tool for MSE, presents the highest sensibility to the signal time variations and long term variability. When ApEn and SampEn, are compared both present a similar behavior, just differing in the intensities of the variations registered for detection of changes in the original signal. The process of adjust window width, can provide relevant results for the detection of the signal complexity decreasing of the signal when repetitive patterns occur through FHR signal, which can indicate pathologies. Finally, the DFA analysis allows to characterize the degree of self-similarity of the analyzed signal. According to the detained results all of the analyzed records present different levels of self-similarity, which can characterize a classification of the evaluated signal. The results allow to conclude that combine different approaches more efficient than apply each one individually and all of them can be considered as viable metrics for a better characterization of the fetal signals for aid to medical diagnosis.
publishDate 2015
dc.date.issued.fl_str_mv 2015
dc.date.accessioned.fl_str_mv 2016-11-21T14:03:10Z
dc.date.available.fl_str_mv 2016-11-21T14:03:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ZACARIAS, Henriques Mateus Joaquim. Avaliação da frequência cardíaca fetal baseada em métricas não-lineares. 2015. 80 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/21128
identifier_str_mv ZACARIAS, Henriques Mateus Joaquim. Avaliação da frequência cardíaca fetal baseada em métricas não-lineares. 2015. 80 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.
url http://www.repositorio.ufc.br/handle/riufc/21128
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/21128/1/2015_dis_hmjzacarias.pdf
http://repositorio.ufc.br/bitstream/riufc/21128/2/license.txt
bitstream.checksum.fl_str_mv c5148c402bf1695b41989a09294944f7
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793063298072576