Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen
| Ano de defesa: | 2005 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/16135 |
Resumo: | The Self-Organizing Network Kohonen (Self-Organizing Map - SOM), by employing an unsupervised learning algorithm, has been traditionally implemented in signal processing area in quantization tasks vector, while MLP (Multi-Layer Perceptron ) and RBF (Radial Basis Function) dominate applications that require the approach of input-output mappings. This type of application is commonly found in adaptive filtering tasks that can be formatted from the perspective of direct and inverse modeling systems such as identification equalization of communication channels. In this dissertation, the range of SOM network applications is extended by proposing neural adaptive filter based on this network, showing that they are viable alternatives to non-linear filters based on MLP and RBF networks. This becomes possible through the use of a newly proposed technique, Quantized Temporal Associative Memory - VQTAM), which basically uses the philosophy called Memory Associative Temporal by Quantization Vector (Vector) network training SOM to perform simultaneous vector quantization of spaces input and output relating to the filtering problem analyzed. From the VQTAM technique are proposed three architectures adaptive filters based on SOM, whose performances were evaluated in identifying tasks and equalization of nonlinear channels. The channel used in the simulations was modeled as an autoregressive process of Gauss-Markov first order, contaminated with Gaussian white noise and provided with nonlinearity of the type saturation (sigmoidal). The results show that adaptive filters based on SOM network have equivalent or superior performance to traditional linear transversal filters and non-linear filters based on MLP. |
| id |
UFC-7_eedaf6b1f0cc2bd2b562bae5f4bc25aa |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/16135 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Souza, Luís Gustavo MotaMota, João César MouraBarreto, Guilherme de Alencar2016-04-06T18:41:14Z2016-04-06T18:41:14Z2005SOUZA, L. G. M. Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen. 2005. 97 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2005.http://www.repositorio.ufc.br/handle/riufc/16135The Self-Organizing Network Kohonen (Self-Organizing Map - SOM), by employing an unsupervised learning algorithm, has been traditionally implemented in signal processing area in quantization tasks vector, while MLP (Multi-Layer Perceptron ) and RBF (Radial Basis Function) dominate applications that require the approach of input-output mappings. This type of application is commonly found in adaptive filtering tasks that can be formatted from the perspective of direct and inverse modeling systems such as identification equalization of communication channels. In this dissertation, the range of SOM network applications is extended by proposing neural adaptive filter based on this network, showing that they are viable alternatives to non-linear filters based on MLP and RBF networks. This becomes possible through the use of a newly proposed technique, Quantized Temporal Associative Memory - VQTAM), which basically uses the philosophy called Memory Associative Temporal by Quantization Vector (Vector) network training SOM to perform simultaneous vector quantization of spaces input and output relating to the filtering problem analyzed. From the VQTAM technique are proposed three architectures adaptive filters based on SOM, whose performances were evaluated in identifying tasks and equalization of nonlinear channels. The channel used in the simulations was modeled as an autoregressive process of Gauss-Markov first order, contaminated with Gaussian white noise and provided with nonlinearity of the type saturation (sigmoidal). The results show that adaptive filters based on SOM network have equivalent or superior performance to traditional linear transversal filters and non-linear filters based on MLP.A Rede Auto-Organizável de Kohonen (Self-Organizing Map - SOM), por empregar um algoritmo de aprendizado não supervisionado, vem sendo tradicionalmente aplicada na área de processamento de sinais em tarefas de quantização vetorial, enquanto que redes MLP (Multi-layer Perceptron) e RBF (Radial Basis Function) dominam as aplicações que exigem a aproximação de mapeamentos entrada-saída. Este tipo de aplicação é comumente encontrada em tarefas de filtragem adaptativa que podem ser formatadas segundo a ótica da modelagem direta e inversa de sistemas, tais como identificação equalização de canais de comunicação. Nesta dissertação, a gama de aplicações da rede SOM é estendida através da proposição de filtros adaptativos neurais baseados nesta rede, mostrando que os mesmos são alternativas viáveis aos filtros não-lineares baseados nas redes MLP e RBF. Isto torna-se possível graças ao uso de uma técnica recentemente proposta, Quantized Temporal Associative Memory - VQTAM), que basicamente usa a filosofia de chamada Memória Associativa Temporal por Quantização Vetorial (Vector )treinamento da rede SOM para realizar a quantização vetorial simultânea dos espaços de entrada e de saída relativos ao problema de filtragem analisado. A partir da técnica VQTAM, são propostos três arquiteturas de filtros adaptativos baseadas na rede SOM, cujos desempenhos foram avaliados em tarefas de identificação e equalização de canais nãolineares. O canal usado nas simulações foi modelado como um processo auto-regressivo de Gauss-Markov de primeira ordem, contaminado com ruído branco gaussiano e dotado de não-linearidade do tipo saturação (sigmoidal). Os resultados obtidos mostram que filtros adaptativos baseados na rede SOM têm desempenho equivalente ou superior aos tradicionais filtros transversais lineares e aos filtros não-lineares baseados na rede MLP.TeleinformáticaRedes neuraisFiltragem adaptativaProposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonenProposition and evaluation of the adaptive filtering algorithms basad on the kohoneninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2005_dis_lgmsouza.pdf2005_dis_lgmsouza.pdfapplication/pdf1427421http://repositorio.ufc.br/bitstream/riufc/16135/1/2005_dis_lgmsouza.pdf3da4fe84055886937bef6a27a148b289MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/16135/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/161352022-02-23 10:27:04.302oai:repositorio.ufc.br:riufc/16135w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-02-23T13:27:04Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen |
| dc.title.en.pt_BR.fl_str_mv |
Proposition and evaluation of the adaptive filtering algorithms basad on the kohonen |
| title |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen |
| spellingShingle |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen Souza, Luís Gustavo Mota Teleinformática Redes neurais Filtragem adaptativa |
| title_short |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen |
| title_full |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen |
| title_fullStr |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen |
| title_full_unstemmed |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen |
| title_sort |
Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen |
| author |
Souza, Luís Gustavo Mota |
| author_facet |
Souza, Luís Gustavo Mota |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Mota, João César Moura |
| dc.contributor.author.fl_str_mv |
Souza, Luís Gustavo Mota |
| dc.contributor.advisor1.fl_str_mv |
Barreto, Guilherme de Alencar |
| contributor_str_mv |
Barreto, Guilherme de Alencar |
| dc.subject.por.fl_str_mv |
Teleinformática Redes neurais Filtragem adaptativa |
| topic |
Teleinformática Redes neurais Filtragem adaptativa |
| description |
The Self-Organizing Network Kohonen (Self-Organizing Map - SOM), by employing an unsupervised learning algorithm, has been traditionally implemented in signal processing area in quantization tasks vector, while MLP (Multi-Layer Perceptron ) and RBF (Radial Basis Function) dominate applications that require the approach of input-output mappings. This type of application is commonly found in adaptive filtering tasks that can be formatted from the perspective of direct and inverse modeling systems such as identification equalization of communication channels. In this dissertation, the range of SOM network applications is extended by proposing neural adaptive filter based on this network, showing that they are viable alternatives to non-linear filters based on MLP and RBF networks. This becomes possible through the use of a newly proposed technique, Quantized Temporal Associative Memory - VQTAM), which basically uses the philosophy called Memory Associative Temporal by Quantization Vector (Vector) network training SOM to perform simultaneous vector quantization of spaces input and output relating to the filtering problem analyzed. From the VQTAM technique are proposed three architectures adaptive filters based on SOM, whose performances were evaluated in identifying tasks and equalization of nonlinear channels. The channel used in the simulations was modeled as an autoregressive process of Gauss-Markov first order, contaminated with Gaussian white noise and provided with nonlinearity of the type saturation (sigmoidal). The results show that adaptive filters based on SOM network have equivalent or superior performance to traditional linear transversal filters and non-linear filters based on MLP. |
| publishDate |
2005 |
| dc.date.issued.fl_str_mv |
2005 |
| dc.date.accessioned.fl_str_mv |
2016-04-06T18:41:14Z |
| dc.date.available.fl_str_mv |
2016-04-06T18:41:14Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOUZA, L. G. M. Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen. 2005. 97 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2005. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/16135 |
| identifier_str_mv |
SOUZA, L. G. M. Proposição e avaliação de algoritmos de filtragem adaptativa baseados na rede de kohonen. 2005. 97 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2005. |
| url |
http://www.repositorio.ufc.br/handle/riufc/16135 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/16135/1/2005_dis_lgmsouza.pdf http://repositorio.ufc.br/bitstream/riufc/16135/2/license.txt |
| bitstream.checksum.fl_str_mv |
3da4fe84055886937bef6a27a148b289 8c4401d3d14722a7ca2d07c782a1aab3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793050518028288 |