Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Silva, Vitória Biana da
Orientador(a): Campos, Kilmer Coelho
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/80905
Resumo: Agribusiness is one of the most strategic and dynamic sectors of the Brazilian economy, accounting for a significant share of the country's Gross Domestic Product (GDP) and exports. Given its importance, analyzing the financial health of companies in this sector is crucial not only for corporate management but also for anticipating critical scenarios, such as bankruptcy prevention and mitigating itssocial and financial repercussions. In this context, this study aims to predict and analyze the risk of insolvency among companies listed on the B3 Agribusiness Index (IAGRO) in Brazil. A sample of 30 publicly traded agribusiness companies was used for this purpose. Financial data were collected from the Balance Sheet and Income Statement, covering the period from 2019 to 2022. These data were applied to three widely recognized insolvency prediction models in the literature: Elizabetsky (1976), Kanitz (1978), and Matias (1978). Descriptive analyses were employed to understand the financial profile of the companies, as well as the calculation of the insolvency factor under deterministic and risk conditions. For risk analysis, the Monte Carlo method was used, implemented through the @RISK software, which allowed for the simulation of different scenarios and the assessment of insolvency probability under uncertainty. Discriminant analysis identified the main indicators differentiating solvent and insolvent companies, highlighting net margin, overall indebtedness level, the ratio of financing and bank loans to current assets, and, finally, equity. The discriminant function of the Elizabetsky model demonstrated greater effectiveness in classifying original cases, showing superior ability to distinguish between solvent and insolvent companies compared to the Kanitz and Matias models. The insolvency risk analysis revealed that the pandemic period (starting in 2020) heterogeneously impacted the insolvency risk of companies in the sector. While the Elizabetsky model indicated a high risk of insolvency during this period, the Kanitz and Matias models pointed to a relatively low risk. This divergence underscores the importance of considering multiple approaches in risk assessment, as well as the need to contextualize results within the specific economic and social scenario.
id UFC-7_eee53066f8b97b406a3ce9c885e1cdee
oai_identifier_str oai:repositorio.ufc.br:riufc/80905
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Silva, Vitória Biana daCampos, Kilmer Coelho2025-05-19T17:37:28Z2025-05-19T17:37:28Z2025SILVA, Vitória Biana da. Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil. 2025.82 f. Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Economia Rural, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/80905Agribusiness is one of the most strategic and dynamic sectors of the Brazilian economy, accounting for a significant share of the country's Gross Domestic Product (GDP) and exports. Given its importance, analyzing the financial health of companies in this sector is crucial not only for corporate management but also for anticipating critical scenarios, such as bankruptcy prevention and mitigating itssocial and financial repercussions. In this context, this study aims to predict and analyze the risk of insolvency among companies listed on the B3 Agribusiness Index (IAGRO) in Brazil. A sample of 30 publicly traded agribusiness companies was used for this purpose. Financial data were collected from the Balance Sheet and Income Statement, covering the period from 2019 to 2022. These data were applied to three widely recognized insolvency prediction models in the literature: Elizabetsky (1976), Kanitz (1978), and Matias (1978). Descriptive analyses were employed to understand the financial profile of the companies, as well as the calculation of the insolvency factor under deterministic and risk conditions. For risk analysis, the Monte Carlo method was used, implemented through the @RISK software, which allowed for the simulation of different scenarios and the assessment of insolvency probability under uncertainty. Discriminant analysis identified the main indicators differentiating solvent and insolvent companies, highlighting net margin, overall indebtedness level, the ratio of financing and bank loans to current assets, and, finally, equity. The discriminant function of the Elizabetsky model demonstrated greater effectiveness in classifying original cases, showing superior ability to distinguish between solvent and insolvent companies compared to the Kanitz and Matias models. The insolvency risk analysis revealed that the pandemic period (starting in 2020) heterogeneously impacted the insolvency risk of companies in the sector. While the Elizabetsky model indicated a high risk of insolvency during this period, the Kanitz and Matias models pointed to a relatively low risk. This divergence underscores the importance of considering multiple approaches in risk assessment, as well as the need to contextualize results within the specific economic and social scenario.O agronegócio é um dos setores mais estratégicos e dinâmicos da economia brasileira, representando parcela significativa do Produto Interno Bruto (PIB) e das exportações do País. Dada a sua importância, a análise da situação financeira das empresas desse segmento torna-se de relevo, não apenas, para a gestão empresarial, mas, também, para a antecipação de cenários críticos, como a prevenção de falências e a mitigação de suas repercussões sociais e financeiras. Nessas circunstâncias, este estudo tem como objetivo geral prever e analisar o risco de insolvência das empresas do Índice Agronegócio B3 no Brasil. Com este intento, foi utilizada uma amostra composta por 30 empresas de capital aberto do setor de agronegócio. Os dados financeiros foram extraídos do Balanço Patrimonial e da Demonstração do Resultado do Exercício, abrangendo o período de 2019 a 2022. Esses dados foram submetidos a três modelos de previsão de insolvência amplamente reconhecidos na literatura: Elizabetsky (1976), Kanitz (1978) e Matias (1978). Demais disso, foram empregadas análises descritivas para compreender o perfil financeiro das empresas, bem como se efetivou o cálculo do fator de insolvência em condições determinísticas e de risco. Para a análise de risco, foi utilizado o Método Monte Carlo, implementado por meio do software @RISK, que ensejou a simulação de realidades distintas avaliar a probabilidade de insolvência sob incerteza. A análise discriminante identificou os principais indicadores que diferenciam empresas solventes e insolventes, destacando-se a margem líquida, o nível de endividamento geral, a razão entre financiamentos e empréstimos bancários em relação ao ativo circulante e, por fim, o capital próprio. A função discriminante do modelo de Elizabetsky demonstrou maior eficácia na classificação dos casos originais, exprimindo uma capacidade superior de distinção entre empresas solventes e insolventes em comparação aos modelos de Kanitz e Matias. A análise de risco de insolvência revelou que o período pandêmico (desde 2020) influenciou de modo heterogêneo no risco de insolvência das empresas do setor. Enquanto o modelo de Elizabetsky indicou alto risco de insolvência durante esse período, os modelos de Kanitz e Matias apontaram um risco relativamente baixo. Essa divergência sugere a importância de considerar múltiplas abordagens na avaliação de risco, bem como a necessidade de contextualizar os resultados na ambiência econômica e social específica.Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisanálise discriminante;agronegócio;insolvência;análise de risco.discriminant analysis;agribusiness;insolvency;risk analysis.CNPQ::CIENCIAS SOCIAIS APLICADASinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/8563646416545119https://orcid.org/0000-0001-7752-2542http://lattes.cnpq.br/62061203911911402025ORIGINAL2025_dis_vbsilva.pdf2025_dis_vbsilva.pdfapplication/pdf1000516http://repositorio.ufc.br/bitstream/riufc/80905/1/2025_dis_vbsilva.pdfbaf6086554dfbbd4982d03dae28d8d7eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/80905/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/809052025-05-19 14:38:45.424oai:repositorio.ufc.br:riufc/80905Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-05-19T17:38:45Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
title Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
spellingShingle Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
Silva, Vitória Biana da
CNPQ::CIENCIAS SOCIAIS APLICADAS
análise discriminante;
agronegócio;
insolvência;
análise de risco.
discriminant analysis;
agribusiness;
insolvency;
risk analysis.
title_short Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
title_full Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
title_fullStr Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
title_full_unstemmed Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
title_sort Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil
author Silva, Vitória Biana da
author_facet Silva, Vitória Biana da
author_role author
dc.contributor.author.fl_str_mv Silva, Vitória Biana da
dc.contributor.advisor1.fl_str_mv Campos, Kilmer Coelho
contributor_str_mv Campos, Kilmer Coelho
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS SOCIAIS APLICADAS
topic CNPQ::CIENCIAS SOCIAIS APLICADAS
análise discriminante;
agronegócio;
insolvência;
análise de risco.
discriminant analysis;
agribusiness;
insolvency;
risk analysis.
dc.subject.ptbr.pt_BR.fl_str_mv análise discriminante;
agronegócio;
insolvência;
análise de risco.
dc.subject.en.pt_BR.fl_str_mv discriminant analysis;
agribusiness;
insolvency;
risk analysis.
description Agribusiness is one of the most strategic and dynamic sectors of the Brazilian economy, accounting for a significant share of the country's Gross Domestic Product (GDP) and exports. Given its importance, analyzing the financial health of companies in this sector is crucial not only for corporate management but also for anticipating critical scenarios, such as bankruptcy prevention and mitigating itssocial and financial repercussions. In this context, this study aims to predict and analyze the risk of insolvency among companies listed on the B3 Agribusiness Index (IAGRO) in Brazil. A sample of 30 publicly traded agribusiness companies was used for this purpose. Financial data were collected from the Balance Sheet and Income Statement, covering the period from 2019 to 2022. These data were applied to three widely recognized insolvency prediction models in the literature: Elizabetsky (1976), Kanitz (1978), and Matias (1978). Descriptive analyses were employed to understand the financial profile of the companies, as well as the calculation of the insolvency factor under deterministic and risk conditions. For risk analysis, the Monte Carlo method was used, implemented through the @RISK software, which allowed for the simulation of different scenarios and the assessment of insolvency probability under uncertainty. Discriminant analysis identified the main indicators differentiating solvent and insolvent companies, highlighting net margin, overall indebtedness level, the ratio of financing and bank loans to current assets, and, finally, equity. The discriminant function of the Elizabetsky model demonstrated greater effectiveness in classifying original cases, showing superior ability to distinguish between solvent and insolvent companies compared to the Kanitz and Matias models. The insolvency risk analysis revealed that the pandemic period (starting in 2020) heterogeneously impacted the insolvency risk of companies in the sector. While the Elizabetsky model indicated a high risk of insolvency during this period, the Kanitz and Matias models pointed to a relatively low risk. This divergence underscores the importance of considering multiple approaches in risk assessment, as well as the need to contextualize results within the specific economic and social scenario.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-05-19T17:37:28Z
dc.date.available.fl_str_mv 2025-05-19T17:37:28Z
dc.date.issued.fl_str_mv 2025
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Vitória Biana da. Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil. 2025.82 f. Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Economia Rural, Fortaleza, 2025.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/80905
identifier_str_mv SILVA, Vitória Biana da. Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil. 2025.82 f. Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Economia Rural, Fortaleza, 2025.
url http://repositorio.ufc.br/handle/riufc/80905
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/80905/1/2025_dis_vbsilva.pdf
http://repositorio.ufc.br/bitstream/riufc/80905/2/license.txt
bitstream.checksum.fl_str_mv baf6086554dfbbd4982d03dae28d8d7e
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793087993085952