Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Nunes, Hélder Antero Amaral
Orientador(a): Moreira, Leonardo Oliveira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/75061
Resumo: Dropout and school retention have always been topics addressed in Brazilian education. These issues impact not only students’ lives, their families, and the society they live in but also the budget of educational institutions. This is evidenced by the fact that the high dropout and retention rates represent a waste of public resources. In light of this, educational institutions must fulfill their role as educators and seek innovative approaches to allocate their resources effectively in combating dropout and retention. Educational Data Mining enables the understanding of factors that can enhance the educational proposal, as well as the prediction of students’ performance and the factors influencing learning. For a deeper understanding of the topic and the current state of the art, a Systematic Literature Review was conducted. This review allowed for the identification of the most widely used Artificial Intelligence algorithms, along with the associated data. As a result, this SLR played a fundamental role in improving the understanding and defining the requirements for the proposed software. Based on these characteristics, the goal of this work is to develop a tool that utilizes educational and socioeconomic data mining. Through the application of classification techniques, the tool aims to assist educational managers in addressing dropout and retention from the moment of enrollment until the start of classes. This tool was developed in Java, using the Weka library. In the experiment validation process, two distinct databases were used, resulting in an impressive accuracy rate of over 97% in both databases. To assess the software’s usability, the System Usability Scale questionnaire was administered, with two additional questions added to better understand potential difficulties in using the software within the school community. The questionnaire was conducted by education professionals in schools located in the region of the Pernambuco hinterlands. The results of this validation process provide valuable insights into the tool’s performance and usability, contributing to its ongoing evaluation and improvement.
id UFC-7_f624658d801332e2d47979a33d52c2de
oai_identifier_str oai:repositorio.ufc.br:riufc/75061
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Nunes, Hélder Antero AmaralMoreira, Leonardo Oliveira2023-11-24T19:21:11Z2023-11-24T19:21:11Z2023NUNES, Hélder Antero Amaral. Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar. 2023. 93 f. Dissertação (Mestrado Profissional em Tecnologia Educacional) - Universidade Federal do Ceará, 2023.http://repositorio.ufc.br/handle/riufc/75061Dropout and school retention have always been topics addressed in Brazilian education. These issues impact not only students’ lives, their families, and the society they live in but also the budget of educational institutions. This is evidenced by the fact that the high dropout and retention rates represent a waste of public resources. In light of this, educational institutions must fulfill their role as educators and seek innovative approaches to allocate their resources effectively in combating dropout and retention. Educational Data Mining enables the understanding of factors that can enhance the educational proposal, as well as the prediction of students’ performance and the factors influencing learning. For a deeper understanding of the topic and the current state of the art, a Systematic Literature Review was conducted. This review allowed for the identification of the most widely used Artificial Intelligence algorithms, along with the associated data. As a result, this SLR played a fundamental role in improving the understanding and defining the requirements for the proposed software. Based on these characteristics, the goal of this work is to develop a tool that utilizes educational and socioeconomic data mining. Through the application of classification techniques, the tool aims to assist educational managers in addressing dropout and retention from the moment of enrollment until the start of classes. This tool was developed in Java, using the Weka library. In the experiment validation process, two distinct databases were used, resulting in an impressive accuracy rate of over 97% in both databases. To assess the software’s usability, the System Usability Scale questionnaire was administered, with two additional questions added to better understand potential difficulties in using the software within the school community. The questionnaire was conducted by education professionals in schools located in the region of the Pernambuco hinterlands. The results of this validation process provide valuable insights into the tool’s performance and usability, contributing to its ongoing evaluation and improvement.A evasão e retenção escolar sempre foram temas abordados na educação brasileira. Esses problemas afetam não apenas a vida dos alunos, de suas famílias e da sociedade em que vivem, mas também o orçamento das instituições de ensino. Isso é evidenciado pelo fato de que a alta taxa de evasão e retenção representa um desperdício de recursos públicos. Diante disso, as instituições de ensino devem desempenhar seu papel como educadoras e buscar abordagens inovadoras para aplicar seus recursos no combate à evasão e retenção. A Mineração de Dados Educacionais possibilita o conhecimento de fatores que podem melhorar a proposta educacional, bem como a previsão do desempenho dos alunos e dos fatores que influenciam o aprendizado. Para uma compreensão mais aprofundada do tópico e do estado atual da arte, foi conduzido uma Revisão Sistemática da Literatura. Essa revisão permitiu identificar os algoritmos de Inteligência Artificial mais amplamente empregados, bem como os dados associados a eles. Como resultado, essa RSL desempenhou um papel fundamental ao aprimorar a compreensão e ao definir os requisitos para o software proposto. Com base nessas características, o objetivo deste trabalho é desenvolver uma ferramenta que faça uso da mineração de dados educacionais e socioeconômicos. Através da aplicação de técnicas de classificação, a ferramenta visa auxiliar gestores educacionais no enfrentamento da evasão e retenção escolar, desde o momento da matrícula até o início das aulas. Essa ferramenta foi desenvolvida em Java, fazendo uso da biblioteca Weka. No processo de validação do experimento, foram utilizadas duas bases de dados distintas, resultando em uma impressionante taxa de acurácia de mais de 97% em ambas as bases. Para a validação da usabilidade do software, foi aplicado o questionário Sistema de Avaliação da Usabilidade, ao qual foram adicionadas duas perguntas adicionais com o intuito de compreender melhor as eventuais dificuldades na utilização do software pela comunidade escolar. A aplicação do questionário foi conduzida por profissionais da área de educação em escolas situadas na região do sertão pernambucano. Os resultados desse processo de validação oferecem uma visão valiosa sobre o desempenho e a usabilidade da ferramenta, contribuindo para sua avaliação e aprimoramento contínuo.Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolarinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMineração de dados educacionaisEvasãoRetençãoPrediçãoEducational data miningEvasionRetentionPredictionCNPQ::CIENCIAS HUMANAS::EDUCACAOinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2023-11-24ORIGINAL2023_dis_haanunes.pdf2023_dis_haanunes.pdfapplication/pdf1543349http://repositorio.ufc.br/bitstream/riufc/75061/5/2023_dis_haanunes.pdfbf12ea011bf6e12158be282c92609141MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/75061/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/750612023-11-24 16:22:49.813oai:repositorio.ufc.br:riufc/75061Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-11-24T19:22:49Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
title Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
spellingShingle Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
Nunes, Hélder Antero Amaral
CNPQ::CIENCIAS HUMANAS::EDUCACAO
Mineração de dados educacionais
Evasão
Retenção
Predição
Educational data mining
Evasion
Retention
Prediction
title_short Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
title_full Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
title_fullStr Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
title_full_unstemmed Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
title_sort Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
author Nunes, Hélder Antero Amaral
author_facet Nunes, Hélder Antero Amaral
author_role author
dc.contributor.author.fl_str_mv Nunes, Hélder Antero Amaral
dc.contributor.advisor1.fl_str_mv Moreira, Leonardo Oliveira
contributor_str_mv Moreira, Leonardo Oliveira
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS HUMANAS::EDUCACAO
topic CNPQ::CIENCIAS HUMANAS::EDUCACAO
Mineração de dados educacionais
Evasão
Retenção
Predição
Educational data mining
Evasion
Retention
Prediction
dc.subject.ptbr.pt_BR.fl_str_mv Mineração de dados educacionais
Evasão
Retenção
Predição
dc.subject.en.pt_BR.fl_str_mv Educational data mining
Evasion
Retention
Prediction
description Dropout and school retention have always been topics addressed in Brazilian education. These issues impact not only students’ lives, their families, and the society they live in but also the budget of educational institutions. This is evidenced by the fact that the high dropout and retention rates represent a waste of public resources. In light of this, educational institutions must fulfill their role as educators and seek innovative approaches to allocate their resources effectively in combating dropout and retention. Educational Data Mining enables the understanding of factors that can enhance the educational proposal, as well as the prediction of students’ performance and the factors influencing learning. For a deeper understanding of the topic and the current state of the art, a Systematic Literature Review was conducted. This review allowed for the identification of the most widely used Artificial Intelligence algorithms, along with the associated data. As a result, this SLR played a fundamental role in improving the understanding and defining the requirements for the proposed software. Based on these characteristics, the goal of this work is to develop a tool that utilizes educational and socioeconomic data mining. Through the application of classification techniques, the tool aims to assist educational managers in addressing dropout and retention from the moment of enrollment until the start of classes. This tool was developed in Java, using the Weka library. In the experiment validation process, two distinct databases were used, resulting in an impressive accuracy rate of over 97% in both databases. To assess the software’s usability, the System Usability Scale questionnaire was administered, with two additional questions added to better understand potential difficulties in using the software within the school community. The questionnaire was conducted by education professionals in schools located in the region of the Pernambuco hinterlands. The results of this validation process provide valuable insights into the tool’s performance and usability, contributing to its ongoing evaluation and improvement.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-24T19:21:11Z
dc.date.available.fl_str_mv 2023-11-24T19:21:11Z
dc.date.issued.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NUNES, Hélder Antero Amaral. Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar. 2023. 93 f. Dissertação (Mestrado Profissional em Tecnologia Educacional) - Universidade Federal do Ceará, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/75061
identifier_str_mv NUNES, Hélder Antero Amaral. Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar. 2023. 93 f. Dissertação (Mestrado Profissional em Tecnologia Educacional) - Universidade Federal do Ceará, 2023.
url http://repositorio.ufc.br/handle/riufc/75061
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/75061/5/2023_dis_haanunes.pdf
http://repositorio.ufc.br/bitstream/riufc/75061/4/license.txt
bitstream.checksum.fl_str_mv bf12ea011bf6e12158be282c92609141
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793115134427136