Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: NÓBREGA, Telles Mota Vidal.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://dspace.sti.ufcg.edu.br/handle/riufcg/629
Resumo: Nuvens computacionais oferecem para usuários a facilidade de aquisição de recursos por meio da internet de forma rápida, barata e segura. Entretanto, grande parte das nuvens se mantém ociosa devido à reserva de recursos. Visando a aumentar a utilização da nuvem, provedores de nuvem criaram um modelo de instâncias que reusam recursos ociosos, conhecidas como instâncias oportunistas. Essas instâncias são mais baratas que as instâncias de recursos dedicados, porém voláteis, podendo ser preemptadas do usuário a qualquer momento, o que as torna inadequadas para alguns tipos de aplicação. Processamento de dados, seguindo a tendência de outras aplicações, tem sido migrado para nuvem e pode ser beneficiado por instâncias oportunistas, devido à sua natureza tolerante à falha, resultando na criação de clusters a um custo menor comparado à instâncias com recursos dedicados.Este trabalho propõe a utilização dos recursos ociosos para a criação de um outro modelo de instâncias oportunistas. Esse modelo visa a criação de instâncias oportunistas com qualidade de serviço, que são instâncias criadas baseadas em uma predição do estado da nuvem. A predição é realizada a partir de dados históricos de utilização de recursos como CPU e memória RAM e assim diminuindo o risco de perder instâncias antes do fim do processamento. Ainda com a existência do preditor, o risco de perda de uma máquina existe e para esse caso propomos a utilização de migração viva, movendo a máquina virtual de servidor, evitando assim a destruição da mesma. Com nossa abordagem, utilizando apenas duas instâncias oportunistas durante os experimentos, obtivemos uma diminuição no tempo de processamento de dados de 10% em um cluster com 2 workers e 1 master. Além disso, ao utilizar a migração, temos uma melhora de aproximadamente 70% no tempo de processamento em comparação com os casos onde uma instância é perdida.
id UFCG_89c6413772528b3d3066946d89c65900
oai_identifier_str oai:dspace.sti.ufcg.edu.br:riufcg/629
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str
spelling Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.Computação na NuvemProcessamento de DadosHadoopInstâncias OportunistasCloud ComputingData ProcessingOpportunistic InstancesCiência da computaçãoCiênciasNuvens computacionais oferecem para usuários a facilidade de aquisição de recursos por meio da internet de forma rápida, barata e segura. Entretanto, grande parte das nuvens se mantém ociosa devido à reserva de recursos. Visando a aumentar a utilização da nuvem, provedores de nuvem criaram um modelo de instâncias que reusam recursos ociosos, conhecidas como instâncias oportunistas. Essas instâncias são mais baratas que as instâncias de recursos dedicados, porém voláteis, podendo ser preemptadas do usuário a qualquer momento, o que as torna inadequadas para alguns tipos de aplicação. Processamento de dados, seguindo a tendência de outras aplicações, tem sido migrado para nuvem e pode ser beneficiado por instâncias oportunistas, devido à sua natureza tolerante à falha, resultando na criação de clusters a um custo menor comparado à instâncias com recursos dedicados.Este trabalho propõe a utilização dos recursos ociosos para a criação de um outro modelo de instâncias oportunistas. Esse modelo visa a criação de instâncias oportunistas com qualidade de serviço, que são instâncias criadas baseadas em uma predição do estado da nuvem. A predição é realizada a partir de dados históricos de utilização de recursos como CPU e memória RAM e assim diminuindo o risco de perder instâncias antes do fim do processamento. Ainda com a existência do preditor, o risco de perda de uma máquina existe e para esse caso propomos a utilização de migração viva, movendo a máquina virtual de servidor, evitando assim a destruição da mesma. Com nossa abordagem, utilizando apenas duas instâncias oportunistas durante os experimentos, obtivemos uma diminuição no tempo de processamento de dados de 10% em um cluster com 2 workers e 1 master. Além disso, ao utilizar a migração, temos uma melhora de aproximadamente 70% no tempo de processamento em comparação com os casos onde uma instância é perdida.Cloud computing offers the users the ease of resources acquisition through the Internet in a fast, cheap and safe manner. However, these clouds have a lot of idle resources due to resource reservation. Aiming to increase resources usage, cloud providers have created an instance model that uses these idle resources, known as opportunistic instances. These instances are cheaper than the dedicated resources instances, but are volatile and can be destroyed at any time, which makes them unsuitable for some types of application. Data processing, following the trend of other applications, have been migrated to the cloud and can be benefited by the use opportunistic instances, due to its fault tolerant nature, resulting in the creation of clusters at a lower cost compared to instances with dedicated resources. In this work, we propose the use of idle resources to create another model of opportunistic instances. This model aims to create opportunistic instances with quality of service, which are created instances based on a prediction of the state of the cloud. The prediction is made from historical data of resource usage such as CPU and RAM, thus reducing the risk of losing instances before the end of the processing. Even with the existence of a predictor, the risk of losing a machine still exists, and for this case we propose the use of live migration, moving the virtual machine to a different server, thus avoiding the its destruction. With our approach, using only two opportunistic instances during the experiments, we found a decrease in 10% in the data processing time in a cluster with 2 workers and 1 master. Furthermore, when using the migration, we have an improvement of approximately 70% in processing time compared with the case where one instance is lost.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGBRITO, Andrey Elísio Monteiro.BRITO, Andreyhttp://lattes.cnpq.br/2634324830901340NÓBREGA, Telles Mota Vidal.2016-08-122018-05-09T20:35:48Z2018-05-092018-05-09T20:35:48Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://dspace.sti.ufcg.edu.br/handle/riufcg/629NÓBREGA, T. M. V. Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço. 70 f. Dissertação (Mestrado em Ciência da computação) – Programa de Pós-Graduação em Ciência da computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/629porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2025-07-24T06:06:30Zoai:dspace.sti.ufcg.edu.br:riufcg/629Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512025-07-24T06:06:30Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
title Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
spellingShingle Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
NÓBREGA, Telles Mota Vidal.
Computação na Nuvem
Processamento de Dados
Hadoop
Instâncias Oportunistas
Cloud Computing
Data Processing
Opportunistic Instances
Ciência da computação
Ciências
title_short Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
title_full Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
title_fullStr Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
title_full_unstemmed Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
title_sort Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço.
author NÓBREGA, Telles Mota Vidal.
author_facet NÓBREGA, Telles Mota Vidal.
author_role author
dc.contributor.none.fl_str_mv BRITO, Andrey Elísio Monteiro.
BRITO, Andrey
http://lattes.cnpq.br/2634324830901340
dc.contributor.author.fl_str_mv NÓBREGA, Telles Mota Vidal.
dc.subject.por.fl_str_mv Computação na Nuvem
Processamento de Dados
Hadoop
Instâncias Oportunistas
Cloud Computing
Data Processing
Opportunistic Instances
Ciência da computação
Ciências
topic Computação na Nuvem
Processamento de Dados
Hadoop
Instâncias Oportunistas
Cloud Computing
Data Processing
Opportunistic Instances
Ciência da computação
Ciências
description Nuvens computacionais oferecem para usuários a facilidade de aquisição de recursos por meio da internet de forma rápida, barata e segura. Entretanto, grande parte das nuvens se mantém ociosa devido à reserva de recursos. Visando a aumentar a utilização da nuvem, provedores de nuvem criaram um modelo de instâncias que reusam recursos ociosos, conhecidas como instâncias oportunistas. Essas instâncias são mais baratas que as instâncias de recursos dedicados, porém voláteis, podendo ser preemptadas do usuário a qualquer momento, o que as torna inadequadas para alguns tipos de aplicação. Processamento de dados, seguindo a tendência de outras aplicações, tem sido migrado para nuvem e pode ser beneficiado por instâncias oportunistas, devido à sua natureza tolerante à falha, resultando na criação de clusters a um custo menor comparado à instâncias com recursos dedicados.Este trabalho propõe a utilização dos recursos ociosos para a criação de um outro modelo de instâncias oportunistas. Esse modelo visa a criação de instâncias oportunistas com qualidade de serviço, que são instâncias criadas baseadas em uma predição do estado da nuvem. A predição é realizada a partir de dados históricos de utilização de recursos como CPU e memória RAM e assim diminuindo o risco de perder instâncias antes do fim do processamento. Ainda com a existência do preditor, o risco de perda de uma máquina existe e para esse caso propomos a utilização de migração viva, movendo a máquina virtual de servidor, evitando assim a destruição da mesma. Com nossa abordagem, utilizando apenas duas instâncias oportunistas durante os experimentos, obtivemos uma diminuição no tempo de processamento de dados de 10% em um cluster com 2 workers e 1 master. Além disso, ao utilizar a migração, temos uma melhora de aproximadamente 70% no tempo de processamento em comparação com os casos onde uma instância é perdida.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-12
2018-05-09T20:35:48Z
2018-05-09
2018-05-09T20:35:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://dspace.sti.ufcg.edu.br/handle/riufcg/629
NÓBREGA, T. M. V. Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço. 70 f. Dissertação (Mestrado em Ciência da computação) – Programa de Pós-Graduação em Ciência da computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/629
url https://dspace.sti.ufcg.edu.br/handle/riufcg/629
identifier_str_mv NÓBREGA, T. M. V. Melhorando o processamento de dados com Hadoop na nuvem através do uso transparente de instâncias oportunistas com qualidade de serviço. 70 f. Dissertação (Mestrado em Ciência da computação) – Programa de Pós-Graduação em Ciência da computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/629
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1851784593723621376