Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: LEITE, Daniel Farias Batista.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://dspace.sti.ufcg.edu.br/handle/riufcg/746
Resumo: Tecnologias de Business Intelligence (BI) têm sido utilizadas com sucesso para fins de análise de dados. Tradicionalmente, essa análise é realizada em um contexto restrito e bem controlado, onde as fontes de dados são estruturadas, periodicamente carregadas, estáticas e totalmente materializadas. Atualmente, há uma diversidade de dados nos mais diversos formatos, a exemplo de RDF (Resource Description Framework), um formato semiestruturado, semanticamente rico e externo à infraestrutura de BI. Embora tal formato seja enriquecido semanticamente, e muitas vezes possua um componente espacial, realizar a análise é um desafio. Nessa perspectiva, uma nova categoria de ferramentas analíticas vem surgindo. As ferramentas exploratórias (Exploratory OLAP), como são conhecidas, se caracterizam pela descoberta, aquisição e integração de dados externos em ambientes comuns de análise. Do nosso conhecimento, até a presente data, existem apenas duas ferramentas exploratórias propostas na literatura e elas apresentam duas grandes limitações: exploram apenas fontes de dados estruturadas; e não há exploração do componente espacial dos dados integrados. São ferramentas exploratórias OLAP, e não ferramentas exploratórias SOLAP. Baseando-se nessas ferramentas, este trabalho propõe uma abordagem exploratória SOLAP que integra dados semiestruturados espaciais semânticos com fontes de dados estruturados espaciais tradicionais. Um sistema, denominado ExpSOLAP, que dá suporte a consultas SOLAP on-line sob as duas fontes de dados foi desenvolvido. Por fim, o sistema ExpSOLAP é avaliado através de um exemplo prático, no contexto da base de dados obtida no Linked Movie Data Base, utilizando RDF e banco de dados relacional. Foram formuladas consultas que validaram a análise convencional e espacial na exploração de ambas fontes de dados.
id UFCG_b1eb1bb68cc1499b6d5bfdce07de3400
oai_identifier_str oai:dspace.sti.ufcg.edu.br:riufcg/746
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str
spelling Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.Business IntelligenceExploratory SOLAPWeb SemânticaOntologiaLinked DataSemantic WebOntologyCiênciasCiência da ComputaçãoTecnologias de Business Intelligence (BI) têm sido utilizadas com sucesso para fins de análise de dados. Tradicionalmente, essa análise é realizada em um contexto restrito e bem controlado, onde as fontes de dados são estruturadas, periodicamente carregadas, estáticas e totalmente materializadas. Atualmente, há uma diversidade de dados nos mais diversos formatos, a exemplo de RDF (Resource Description Framework), um formato semiestruturado, semanticamente rico e externo à infraestrutura de BI. Embora tal formato seja enriquecido semanticamente, e muitas vezes possua um componente espacial, realizar a análise é um desafio. Nessa perspectiva, uma nova categoria de ferramentas analíticas vem surgindo. As ferramentas exploratórias (Exploratory OLAP), como são conhecidas, se caracterizam pela descoberta, aquisição e integração de dados externos em ambientes comuns de análise. Do nosso conhecimento, até a presente data, existem apenas duas ferramentas exploratórias propostas na literatura e elas apresentam duas grandes limitações: exploram apenas fontes de dados estruturadas; e não há exploração do componente espacial dos dados integrados. São ferramentas exploratórias OLAP, e não ferramentas exploratórias SOLAP. Baseando-se nessas ferramentas, este trabalho propõe uma abordagem exploratória SOLAP que integra dados semiestruturados espaciais semânticos com fontes de dados estruturados espaciais tradicionais. Um sistema, denominado ExpSOLAP, que dá suporte a consultas SOLAP on-line sob as duas fontes de dados foi desenvolvido. Por fim, o sistema ExpSOLAP é avaliado através de um exemplo prático, no contexto da base de dados obtida no Linked Movie Data Base, utilizando RDF e banco de dados relacional. Foram formuladas consultas que validaram a análise convencional e espacial na exploração de ambas fontes de dados.Business Intelligence (BI) technologies have been successfully applied for data analysis purposes. Traditionally, such analysis is performed in well-controlled and restricted context, where data sources are structured, periodically loaded, static and fully materialized. Nowadays, there is a plenty of data in different formats such as the Resource Description Framework (RDF), a semi-structured and semantically rich format external to the BI infrastructure. Although such data formats are enriched by semantics and contains a spatial data component, performing data analysis is challenging. As a result, the Exploratory OLAP field has emerged for discovery, acquisition, integration and query such data, aiming at performing a complete and effective analysis on both internal and external data. To the best of our knowledge, there are only two exploratory tools proposed in the literature and they have two major limitations due to only structured data sources can be explored and there is no exploration of the spatial component of the integrated data. While they are exploratory OLAP tools, they are not exploratory SOLAP tools. Based on these tools, this work proposes an Exploratory SOLAP approach that integrates semantic spatial semi-structured data with traditional spatial structured data sources. A system named ExpSOLAP, which supports online SOLAP queries on both data sources, was developed. Finally, a case study was carried out in order to evaluate the ExpSOLAP system based on a dataset originating from the Linked Movie Data Base and using RDF and relational datasets. The formulated queries enabled to validate the conventional and spatial analysis from both data sources.CNPqUniversidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGBAPTISTA, Cláudio de Souza.BAPTISTA, C. S.http://lattes.cnpq.br/0104124422364023LEITE, Daniel Farias Batista.20162018-05-21T11:48:24Z2018-05-212018-05-21T11:48:24Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://dspace.sti.ufcg.edu.br/handle/riufcg/746LEITE, D. F. B. Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados. 2016. 112 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/746porCAPESinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2025-07-24T06:07:13Zoai:dspace.sti.ufcg.edu.br:riufcg/746Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512025-07-24T06:07:13Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
title Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
spellingShingle Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
LEITE, Daniel Farias Batista.
Business Intelligence
Exploratory SOLAP
Web Semântica
Ontologia
Linked Data
Semantic Web
Ontology
Ciências
Ciência da Computação
title_short Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
title_full Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
title_fullStr Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
title_full_unstemmed Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
title_sort Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados.
author LEITE, Daniel Farias Batista.
author_facet LEITE, Daniel Farias Batista.
author_role author
dc.contributor.none.fl_str_mv BAPTISTA, Cláudio de Souza.
BAPTISTA, C. S.
http://lattes.cnpq.br/0104124422364023
dc.contributor.author.fl_str_mv LEITE, Daniel Farias Batista.
dc.subject.por.fl_str_mv Business Intelligence
Exploratory SOLAP
Web Semântica
Ontologia
Linked Data
Semantic Web
Ontology
Ciências
Ciência da Computação
topic Business Intelligence
Exploratory SOLAP
Web Semântica
Ontologia
Linked Data
Semantic Web
Ontology
Ciências
Ciência da Computação
description Tecnologias de Business Intelligence (BI) têm sido utilizadas com sucesso para fins de análise de dados. Tradicionalmente, essa análise é realizada em um contexto restrito e bem controlado, onde as fontes de dados são estruturadas, periodicamente carregadas, estáticas e totalmente materializadas. Atualmente, há uma diversidade de dados nos mais diversos formatos, a exemplo de RDF (Resource Description Framework), um formato semiestruturado, semanticamente rico e externo à infraestrutura de BI. Embora tal formato seja enriquecido semanticamente, e muitas vezes possua um componente espacial, realizar a análise é um desafio. Nessa perspectiva, uma nova categoria de ferramentas analíticas vem surgindo. As ferramentas exploratórias (Exploratory OLAP), como são conhecidas, se caracterizam pela descoberta, aquisição e integração de dados externos em ambientes comuns de análise. Do nosso conhecimento, até a presente data, existem apenas duas ferramentas exploratórias propostas na literatura e elas apresentam duas grandes limitações: exploram apenas fontes de dados estruturadas; e não há exploração do componente espacial dos dados integrados. São ferramentas exploratórias OLAP, e não ferramentas exploratórias SOLAP. Baseando-se nessas ferramentas, este trabalho propõe uma abordagem exploratória SOLAP que integra dados semiestruturados espaciais semânticos com fontes de dados estruturados espaciais tradicionais. Um sistema, denominado ExpSOLAP, que dá suporte a consultas SOLAP on-line sob as duas fontes de dados foi desenvolvido. Por fim, o sistema ExpSOLAP é avaliado através de um exemplo prático, no contexto da base de dados obtida no Linked Movie Data Base, utilizando RDF e banco de dados relacional. Foram formuladas consultas que validaram a análise convencional e espacial na exploração de ambas fontes de dados.
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-05-21T11:48:24Z
2018-05-21
2018-05-21T11:48:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://dspace.sti.ufcg.edu.br/handle/riufcg/746
LEITE, D. F. B. Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados. 2016. 112 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/746
url https://dspace.sti.ufcg.edu.br/handle/riufcg/746
identifier_str_mv LEITE, D. F. B. Processamento analítico espacial e exploratório integrando dados estruturados e semiestruturados. 2016. 112 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/746
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv CAPES
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1851784594522636288