Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: ESTEVES, Tayrone Duque lattes
Orientador(a): GOMES, José Henrique de Freitas lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Engenharia de Produção
Departamento: IEPG - Instituto de Engenharia de Produção e Gestão
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/4273
Resumo: O modelo de negócio de compras recorrentes, como os clubes de assinatura, tem crescido muito nos últimos anos. Como adquirir novos clientes tem um custo maior do que reter os atuais, a perda de clientes (churn) tem um impacto negativo na competitividade do negócio, e a capacidade de prevê-lo torna-se um diferencial estratégico. A diversidade de métodos disponíveis e a falta de um processo padronizado de avaliação de modelos são desafios tanto acadêmicos quanto práticos para o setor. Nesse contexto, esse trabalho estruturou um procedimento voltado para a construção de métodos de previsão de churn composto de três etapas: preparação dos dados, aplicação dos modelos e avaliação dos modelos. Para isso, primeiramente os dados são padronizados e balanceados, métricas são definidas para comparação entre os modelos e uma análise de estabilidade é realizada. Para validação deste método, sua aplicação foi realizada no caso real de um clube de assinaturas de livros, para o qual sete variáveis preditoras foram selecionadas para compor 3 modelos de previsão: regressão logística, uma combinação entre o algoritmo média-k e a regressão logística, e uma rede neural mutilayer perceptron (MLP). A regressão logística ficou selecionada como o melhor dentre os métodos testados, apresentando acuracidade de 71,1% e 44,6% de precisão. Os resultados encontrados são superiores aos do modelo atual aplicado na empresa estudada, que possui 71,8% de acuracidade e 12,1% de precisão. O procedimento estruturado mostrou-se efetivo na seleção de métodos e direcionamento de tomadas de decisão para o desenvolvimento de modelos de previsão de forma padronizada e robusta.
id UFEI_8e39f7b539ffd987ceb34e3d73ee77a6
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/4273
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str
spelling 2025-05-232025-09-182025-09-18T11:52:24Z2025-09-18T11:52:24ZESTEVES, Tayrone Duque. Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência. 2025. 83 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2025.https://repositorio.unifei.edu.br/jspui/handle/123456789/4273O modelo de negócio de compras recorrentes, como os clubes de assinatura, tem crescido muito nos últimos anos. Como adquirir novos clientes tem um custo maior do que reter os atuais, a perda de clientes (churn) tem um impacto negativo na competitividade do negócio, e a capacidade de prevê-lo torna-se um diferencial estratégico. A diversidade de métodos disponíveis e a falta de um processo padronizado de avaliação de modelos são desafios tanto acadêmicos quanto práticos para o setor. Nesse contexto, esse trabalho estruturou um procedimento voltado para a construção de métodos de previsão de churn composto de três etapas: preparação dos dados, aplicação dos modelos e avaliação dos modelos. Para isso, primeiramente os dados são padronizados e balanceados, métricas são definidas para comparação entre os modelos e uma análise de estabilidade é realizada. Para validação deste método, sua aplicação foi realizada no caso real de um clube de assinaturas de livros, para o qual sete variáveis preditoras foram selecionadas para compor 3 modelos de previsão: regressão logística, uma combinação entre o algoritmo média-k e a regressão logística, e uma rede neural mutilayer perceptron (MLP). A regressão logística ficou selecionada como o melhor dentre os métodos testados, apresentando acuracidade de 71,1% e 44,6% de precisão. Os resultados encontrados são superiores aos do modelo atual aplicado na empresa estudada, que possui 71,8% de acuracidade e 12,1% de precisão. O procedimento estruturado mostrou-se efetivo na seleção de métodos e direcionamento de tomadas de decisão para o desenvolvimento de modelos de previsão de forma padronizada e robusta.The recurring purchase business model, such as subscription clubs, has grown significantly in recent years. Since acquiring new customers is more costly than retaining existing ones, customer loss (churn) negatively impacts business competitiveness, making the ability to predict it a strategic advantage. The variety of available methods and the lack of a standardized model evaluation process pose both academic and practical challenges for the sector. In this context, this study structured a procedure for developing churn prediction models, consisting of three stages: data preparation, model application, and model evaluation. First, the data is standardized and balanced, comparison metrics are defined, and lastly a stability analysis is conducted. To validate the method, its application was performed in a real case of a book subscription club. Seven predictive variables were selected to train three models: logistic regression, a combination of the kmeans algorithm with logistic regression, and a multilayer perceptron (MLP) neural network. Logistic regression was identified as the best-performing method, achieving 71,1% of accuracy and 44,6% of precision. These results are superior to the actual model used by the company, that has 71,8% of accuracy and 12,1% of precision. Overall, the structured procedure proved effective in model selection and decision-making for churn prediction development in a standardized and robust way. Keywords:porUniversidade Federal de ItajubáPrograma de Pós-Graduação: Mestrado - Engenharia de ProduçãoUNIFEIBrasilIEPG - Instituto de Engenharia de Produção e GestãoCNPQ::CIÊNCIAS SOCIAIS APLICADAS::ADMINISTRAÇÃOPrevisão de churnFrameworkRegressão logísticaRedes neuraisClubes de assinaturaDesenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrênciainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisGOMES, José Henrique de Freitashttp://lattes.cnpq.br/4700366676258208http://lattes.cnpq.br/5702244507741905ESTEVES, Tayrone Duqueinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4273/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALDissertação_2025059.pdfDissertação_2025059.pdfapplication/pdf3844270https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4273/1/Disserta%c3%a7%c3%a3o_2025059.pdf815d52b4971fb7cab4b498cf2f36269fMD51123456789/42732025-09-18 08:52:25.039oai:repositorio.unifei.edu.br:123456789/4273Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442025-09-24T16:46:22.812862Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
title Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
spellingShingle Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
ESTEVES, Tayrone Duque
CNPQ::CIÊNCIAS SOCIAIS APLICADAS::ADMINISTRAÇÃO
Previsão de churn
Framework
Regressão logística
Redes neurais
Clubes de assinatura
title_short Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
title_full Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
title_fullStr Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
title_full_unstemmed Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
title_sort Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência
author ESTEVES, Tayrone Duque
author_facet ESTEVES, Tayrone Duque
author_role author
dc.contributor.advisor1.fl_str_mv GOMES, José Henrique de Freitas
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4700366676258208
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5702244507741905
dc.contributor.author.fl_str_mv ESTEVES, Tayrone Duque
contributor_str_mv GOMES, José Henrique de Freitas
dc.subject.cnpq.fl_str_mv CNPQ::CIÊNCIAS SOCIAIS APLICADAS::ADMINISTRAÇÃO
topic CNPQ::CIÊNCIAS SOCIAIS APLICADAS::ADMINISTRAÇÃO
Previsão de churn
Framework
Regressão logística
Redes neurais
Clubes de assinatura
dc.subject.por.fl_str_mv Previsão de churn
Framework
Regressão logística
Redes neurais
Clubes de assinatura
description O modelo de negócio de compras recorrentes, como os clubes de assinatura, tem crescido muito nos últimos anos. Como adquirir novos clientes tem um custo maior do que reter os atuais, a perda de clientes (churn) tem um impacto negativo na competitividade do negócio, e a capacidade de prevê-lo torna-se um diferencial estratégico. A diversidade de métodos disponíveis e a falta de um processo padronizado de avaliação de modelos são desafios tanto acadêmicos quanto práticos para o setor. Nesse contexto, esse trabalho estruturou um procedimento voltado para a construção de métodos de previsão de churn composto de três etapas: preparação dos dados, aplicação dos modelos e avaliação dos modelos. Para isso, primeiramente os dados são padronizados e balanceados, métricas são definidas para comparação entre os modelos e uma análise de estabilidade é realizada. Para validação deste método, sua aplicação foi realizada no caso real de um clube de assinaturas de livros, para o qual sete variáveis preditoras foram selecionadas para compor 3 modelos de previsão: regressão logística, uma combinação entre o algoritmo média-k e a regressão logística, e uma rede neural mutilayer perceptron (MLP). A regressão logística ficou selecionada como o melhor dentre os métodos testados, apresentando acuracidade de 71,1% e 44,6% de precisão. Os resultados encontrados são superiores aos do modelo atual aplicado na empresa estudada, que possui 71,8% de acuracidade e 12,1% de precisão. O procedimento estruturado mostrou-se efetivo na seleção de métodos e direcionamento de tomadas de decisão para o desenvolvimento de modelos de previsão de forma padronizada e robusta.
publishDate 2025
dc.date.issued.fl_str_mv 2025-05-23
dc.date.available.fl_str_mv 2025-09-18
2025-09-18T11:52:24Z
dc.date.accessioned.fl_str_mv 2025-09-18T11:52:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ESTEVES, Tayrone Duque. Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência. 2025. 83 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2025.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/4273
identifier_str_mv ESTEVES, Tayrone Duque. Desenvolvimento de um processo estruturado para a modelagem de previsão de churn em modelos de negócio de recorrência. 2025. 83 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2025.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/4273
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Mestrado - Engenharia de Produção
dc.publisher.initials.fl_str_mv UNIFEI
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv IEPG - Instituto de Engenharia de Produção e Gestão
publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4273/2/license.txt
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4273/1/Disserta%c3%a7%c3%a3o_2025059.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
815d52b4971fb7cab4b498cf2f36269f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1854751286481649664