Exportação concluída — 

Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: NAMBUNDO, Jones Marcio lattes
Orientador(a): GOMES, Otávio de Souza Martins lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Engenharia Elétrica
Departamento: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/4274
Resumo: O crescente foco global na eficiência energética impulsiona a necessidade de soluções inovadoras que combinem sustentabilidade, economia e tecnologia. Nesse contexto, os medidores inteligentes (smart meters) desempenham um papel essencial ao permitir o monitoramento em tempo real do consumo de energia, promovendo transparência para provedores e consumidores. Este trabalho apresenta o desenvolvimento de um sistema de análise preditiva em tempo real para smart meters, utilizando Machine Learning embarcado (TinyML) no microcontrolador ESP32. O sistema é projetado para operar em ambientes com conectividade limitada, realizando processamento local dos dados e reduzindo a dependência de infraestrutura em nuvem. O protótipo utiliza dados reais coletados de uma geladeira durante 31 dias, com medições contínuas 24 horas por dia. Três modelos foram testados e dois implementados: XGBoost regressor para previsão de consumo, e One-Class SVM e Autoencoder para detecção de anomalias. Os modelos foram otimizados para execução embarcada: o One-Class SVM e o XGBoost foram convertidos para C++ usando a biblioteca micromlgen, enquanto o Autoencoder foi adaptado para TensorFlow Lite (TFLite) com técnicas de pruning para reduzir seu tamanho e consumo computacional. Os resultados mostraram que o One-class SVM alcançou maior precisão na detecção de anomalias, enquanto o Autoenconder apresentou menor tempo de inferência e menor uso de memória, tornando-o uma solução eficiente para dispositivos embarcados. O XGBoost demonstrou um MAE de 0.27 na previsão do consumo, indicando um bom desempenho na acurácia das suas previsões. Esses resultados destacam a viabilidade da aplicação de TinyML em sistemas de monitoramento de energia, contribuindo para a gestão eficiente das redes de distribuição, detecção de fraudes e promoção de comportamentos mais sustentáveis entre os usuários.
id UFEI_a200062bd88a56c0b678fb2819ca6cb0
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/4274
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str
spelling 2025-07-182025-09-182025-09-18T12:41:36Z2025-09-18T12:41:36ZNAMBUNDO, Jones Marcio. Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML). 2025. 103 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2025.https://repositorio.unifei.edu.br/jspui/handle/123456789/4274O crescente foco global na eficiência energética impulsiona a necessidade de soluções inovadoras que combinem sustentabilidade, economia e tecnologia. Nesse contexto, os medidores inteligentes (smart meters) desempenham um papel essencial ao permitir o monitoramento em tempo real do consumo de energia, promovendo transparência para provedores e consumidores. Este trabalho apresenta o desenvolvimento de um sistema de análise preditiva em tempo real para smart meters, utilizando Machine Learning embarcado (TinyML) no microcontrolador ESP32. O sistema é projetado para operar em ambientes com conectividade limitada, realizando processamento local dos dados e reduzindo a dependência de infraestrutura em nuvem. O protótipo utiliza dados reais coletados de uma geladeira durante 31 dias, com medições contínuas 24 horas por dia. Três modelos foram testados e dois implementados: XGBoost regressor para previsão de consumo, e One-Class SVM e Autoencoder para detecção de anomalias. Os modelos foram otimizados para execução embarcada: o One-Class SVM e o XGBoost foram convertidos para C++ usando a biblioteca micromlgen, enquanto o Autoencoder foi adaptado para TensorFlow Lite (TFLite) com técnicas de pruning para reduzir seu tamanho e consumo computacional. Os resultados mostraram que o One-class SVM alcançou maior precisão na detecção de anomalias, enquanto o Autoenconder apresentou menor tempo de inferência e menor uso de memória, tornando-o uma solução eficiente para dispositivos embarcados. O XGBoost demonstrou um MAE de 0.27 na previsão do consumo, indicando um bom desempenho na acurácia das suas previsões. Esses resultados destacam a viabilidade da aplicação de TinyML em sistemas de monitoramento de energia, contribuindo para a gestão eficiente das redes de distribuição, detecção de fraudes e promoção de comportamentos mais sustentáveis entre os usuários.The growing global focus on energy efficiency drives the need for innovative solutions that combine sustainability, economy, and technology. In this context, smart meters play an essential role by enabling real-time monitoring of energy consumption, promoting transparency for both providers and consumers. This work presents the development of a realtime predictive analysis system for smart meters, utilizing embedded Machine Learning (TinyML) on the ESP32 microcontroller. The system is designed to operate in environments with limited connectivity, performing local data processing and reducing reliance on cloud infrastructure. The prototype uses real data collected from a refrigerator over 31 days, with continuous 24- hour measurements. Three models were tested and two implemented: XGBoost regressor for consumption forecasting, and One-Class SVM and Autoencoder for anomaly detection. The models were optimized for embedded execution: the One-Class SVM and XGBoost were converted to C++ using the micromlgen library, while the Autoencoder was adapted for TensorFlow Lite (TFLite) with pruning techniques to reduce its size and computational consumption. The results showed that the One-Class SVM achieved higher accuracy in anomaly detection, while the Autoencoder presented lower inference time and memory usage, making it an efficient solution for embedded devices. The XGBoost demonstrated a Mean Absolute Error (MAE) of 0.27 in consumption forecasting, indicating good performance in the accuracy of its predictions. These results highlight the viability of applying TinyML in energy monitoring systems, contributing to the efficient management of distribution networks, fraud detection, and the promotion of more sustainable behaviors among users.porUniversidade Federal de ItajubáPrograma de Pós-Graduação: Mestrado - Engenharia ElétricaUNIFEIBrasilIESTI - Instituto de Engenharia de Sistemas e Tecnologia da InformaçãoCNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICATinyMLSmart metersAnálise preditiva em tempo realEficiência energéticaMachine learningBig DataSistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisGOMES, Otávio de Souza Martinshttp://lattes.cnpq.br/5092964831326431http://lattes.cnpq.br/0466131033997035NAMBUNDO, Jones Marcioinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4274/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALDissertação_2025060.pdfDissertação_2025060.pdfapplication/pdf9112465https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4274/1/Disserta%c3%a7%c3%a3o_2025060.pdf8bc07153f009b5abd9dbe7aabd43fb85MD51123456789/42742025-09-18 09:41:36.176oai:repositorio.unifei.edu.br:123456789/4274Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442025-09-24T16:46:20.273287Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
title Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
spellingShingle Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
NAMBUNDO, Jones Marcio
CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA
TinyML
Smart meters
Análise preditiva em tempo real
Eficiência energética
Machine learning
Big Data
title_short Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
title_full Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
title_fullStr Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
title_full_unstemmed Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
title_sort Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML)
author NAMBUNDO, Jones Marcio
author_facet NAMBUNDO, Jones Marcio
author_role author
dc.contributor.advisor1.fl_str_mv GOMES, Otávio de Souza Martins
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5092964831326431
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0466131033997035
dc.contributor.author.fl_str_mv NAMBUNDO, Jones Marcio
contributor_str_mv GOMES, Otávio de Souza Martins
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA
TinyML
Smart meters
Análise preditiva em tempo real
Eficiência energética
Machine learning
Big Data
dc.subject.por.fl_str_mv TinyML
Smart meters
Análise preditiva em tempo real
Eficiência energética
Machine learning
Big Data
description O crescente foco global na eficiência energética impulsiona a necessidade de soluções inovadoras que combinem sustentabilidade, economia e tecnologia. Nesse contexto, os medidores inteligentes (smart meters) desempenham um papel essencial ao permitir o monitoramento em tempo real do consumo de energia, promovendo transparência para provedores e consumidores. Este trabalho apresenta o desenvolvimento de um sistema de análise preditiva em tempo real para smart meters, utilizando Machine Learning embarcado (TinyML) no microcontrolador ESP32. O sistema é projetado para operar em ambientes com conectividade limitada, realizando processamento local dos dados e reduzindo a dependência de infraestrutura em nuvem. O protótipo utiliza dados reais coletados de uma geladeira durante 31 dias, com medições contínuas 24 horas por dia. Três modelos foram testados e dois implementados: XGBoost regressor para previsão de consumo, e One-Class SVM e Autoencoder para detecção de anomalias. Os modelos foram otimizados para execução embarcada: o One-Class SVM e o XGBoost foram convertidos para C++ usando a biblioteca micromlgen, enquanto o Autoencoder foi adaptado para TensorFlow Lite (TFLite) com técnicas de pruning para reduzir seu tamanho e consumo computacional. Os resultados mostraram que o One-class SVM alcançou maior precisão na detecção de anomalias, enquanto o Autoenconder apresentou menor tempo de inferência e menor uso de memória, tornando-o uma solução eficiente para dispositivos embarcados. O XGBoost demonstrou um MAE de 0.27 na previsão do consumo, indicando um bom desempenho na acurácia das suas previsões. Esses resultados destacam a viabilidade da aplicação de TinyML em sistemas de monitoramento de energia, contribuindo para a gestão eficiente das redes de distribuição, detecção de fraudes e promoção de comportamentos mais sustentáveis entre os usuários.
publishDate 2025
dc.date.issued.fl_str_mv 2025-07-18
dc.date.available.fl_str_mv 2025-09-18
2025-09-18T12:41:36Z
dc.date.accessioned.fl_str_mv 2025-09-18T12:41:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NAMBUNDO, Jones Marcio. Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML). 2025. 103 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2025.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/4274
identifier_str_mv NAMBUNDO, Jones Marcio. Sistema de análise preditiva em tempo real para Smart Meters usando Machine Learning embarcado (TinyML). 2025. 103 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2025.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/4274
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Mestrado - Engenharia Elétrica
dc.publisher.initials.fl_str_mv UNIFEI
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4274/2/license.txt
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4274/1/Disserta%c3%a7%c3%a3o_2025060.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8bc07153f009b5abd9dbe7aabd43fb85
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1854751286278225920