Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Itajubá
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
|
| Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.unifei.edu.br/jspui/handle/123456789/4135 |
Resumo: | A utilização de Veículos Aéreos Não Tripulados (VANTs) em operações de busca e salvamento tem crescido significativamente, principalmente devido à redução de custos e ao menor risco associado. No entanto, a eficácia desses veículos está intimamente ligada à qualidade dos sensores utilizados para captura e identificação de alvos, tornando a investigação desses equipamentos uma área crucial. Este estudo apresenta uma revisão sistemática da literatura sobre a aplicação de Redes Adversariais Generativas (GANs) em imagens geradas por VANTs com foco em busca e resgate. Além disso, introduzimos uma metodologia que utiliza a ferramenta Real-ESRGAN para aprimorar imagens obtidas por VANTs durante missões de busca e salvamento, com foco em sensores que operam na faixa infravermelha. Os resultados da aplicação dessa técnica em nosso conjunto de dados, combinados com a validação utilizando a ferramenta YOLOv8, revelam melhorias significativas na qualidade das imagens. Isso sugere que a abordagem proposta pode ter aplicações valiosas no pós-processamento e na identificação de alvos humanos durante operações de busca e resgate. |
| id |
UFEI_b4e7e011635b7367f5cf40f735beab04 |
|---|---|
| oai_identifier_str |
oai:repositorio.unifei.edu.br:123456789/4135 |
| network_acronym_str |
UFEI |
| network_name_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
| repository_id_str |
|
| spelling |
2024-09-112024-09-232024-09-23T17:28:04Z2024-09-23T17:28:04Zhttps://repositorio.unifei.edu.br/jspui/handle/123456789/4135A utilização de Veículos Aéreos Não Tripulados (VANTs) em operações de busca e salvamento tem crescido significativamente, principalmente devido à redução de custos e ao menor risco associado. No entanto, a eficácia desses veículos está intimamente ligada à qualidade dos sensores utilizados para captura e identificação de alvos, tornando a investigação desses equipamentos uma área crucial. Este estudo apresenta uma revisão sistemática da literatura sobre a aplicação de Redes Adversariais Generativas (GANs) em imagens geradas por VANTs com foco em busca e resgate. Além disso, introduzimos uma metodologia que utiliza a ferramenta Real-ESRGAN para aprimorar imagens obtidas por VANTs durante missões de busca e salvamento, com foco em sensores que operam na faixa infravermelha. Os resultados da aplicação dessa técnica em nosso conjunto de dados, combinados com a validação utilizando a ferramenta YOLOv8, revelam melhorias significativas na qualidade das imagens. Isso sugere que a abordagem proposta pode ter aplicações valiosas no pós-processamento e na identificação de alvos humanos durante operações de busca e resgate.The use of Unmanned Aerial Vehicles (UAVs) in search and rescue operations has grown significantly, primarily due to reduced costs and lower associated risks. However, the effectiveness of these vehicles is closely linked to the quality of the sensors used for target capture and identification, making the investigation of these devices a crucial area of research. This study presents a systematic review of the literature on the application of Generative Adversarial Networks (GANs) in UAV-generated images, with a focus on search and rescue. Additionally, we introduce a methodology that uses the Real-ESRGAN tool to enhance images obtained by UAVs during search and rescue missions, specifically targeting sensors that operate in the infrared spectrum. The results of applying this technique to our dataset show significant improvements in image quality, suggesting that this approach may have valuable applications in post-processing and in the identification of human targets in search and rescue operations.engUniversidade Federal de ItajubáPrograma de Pós-Graduação: Mestrado - Ciência e Tecnologia da ComputaçãoUNIFEIBrasilIESTI - Instituto de Engenharia de Sistemas e Tecnologia da InformaçãoCNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃOVisão computacionalProcessamento digital de imagensBusca e salvamentoRedes generativas adversariaisComputer visionDigital image processingSearch and rescueGenerative adversarial networksApplication of Real-ESRGAN in improving IR sensor Images for use in SAR operationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisRAMOS, Alexandre Carlos Brandãohttp://lattes.cnpq.br/1897790038591384http://lattes.cnpq.br/3173511083610377CORREA, Vinícius Henrique GeraldoAlexandre Carlos Brandão Ramos. Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations. 2024. 87 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação.) – Universidade Federal de Itajubá, Itajubá, 2024.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4135/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALDissertação_2024117.pdfDissertação_2024117.pdfapplication/pdf14960842https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4135/1/Disserta%c3%a7%c3%a3o_2024117.pdf7479da9c06f5a55c6cc29ac9a244e8e8MD51123456789/41352024-09-23 14:28:04.611oai:repositorio.unifei.edu.br:123456789/4135Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442025-08-26T21:14:18.482398Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false |
| dc.title.pt_BR.fl_str_mv |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations |
| title |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations |
| spellingShingle |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations CORREA, Vinícius Henrique Geraldo CNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃO Visão computacional Processamento digital de imagens Busca e salvamento Redes generativas adversariais Computer vision Digital image processing Search and rescue Generative adversarial networks |
| title_short |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations |
| title_full |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations |
| title_fullStr |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations |
| title_full_unstemmed |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations |
| title_sort |
Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations |
| author |
CORREA, Vinícius Henrique Geraldo |
| author_facet |
CORREA, Vinícius Henrique Geraldo |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
RAMOS, Alexandre Carlos Brandão |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1897790038591384 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3173511083610377 |
| dc.contributor.author.fl_str_mv |
CORREA, Vinícius Henrique Geraldo |
| contributor_str_mv |
RAMOS, Alexandre Carlos Brandão |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃO |
| topic |
CNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃO Visão computacional Processamento digital de imagens Busca e salvamento Redes generativas adversariais Computer vision Digital image processing Search and rescue Generative adversarial networks |
| dc.subject.por.fl_str_mv |
Visão computacional Processamento digital de imagens Busca e salvamento Redes generativas adversariais Computer vision Digital image processing Search and rescue Generative adversarial networks |
| description |
A utilização de Veículos Aéreos Não Tripulados (VANTs) em operações de busca e salvamento tem crescido significativamente, principalmente devido à redução de custos e ao menor risco associado. No entanto, a eficácia desses veículos está intimamente ligada à qualidade dos sensores utilizados para captura e identificação de alvos, tornando a investigação desses equipamentos uma área crucial. Este estudo apresenta uma revisão sistemática da literatura sobre a aplicação de Redes Adversariais Generativas (GANs) em imagens geradas por VANTs com foco em busca e resgate. Além disso, introduzimos uma metodologia que utiliza a ferramenta Real-ESRGAN para aprimorar imagens obtidas por VANTs durante missões de busca e salvamento, com foco em sensores que operam na faixa infravermelha. Os resultados da aplicação dessa técnica em nosso conjunto de dados, combinados com a validação utilizando a ferramenta YOLOv8, revelam melhorias significativas na qualidade das imagens. Isso sugere que a abordagem proposta pode ter aplicações valiosas no pós-processamento e na identificação de alvos humanos durante operações de busca e resgate. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-09-11 |
| dc.date.available.fl_str_mv |
2024-09-23 2024-09-23T17:28:04Z |
| dc.date.accessioned.fl_str_mv |
2024-09-23T17:28:04Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/handle/123456789/4135 |
| url |
https://repositorio.unifei.edu.br/jspui/handle/123456789/4135 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.references.pt_BR.fl_str_mv |
Alexandre Carlos Brandão Ramos. Application of Real-ESRGAN in improving IR sensor Images for use in SAR operations. 2024. 87 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação.) – Universidade Federal de Itajubá, Itajubá, 2024. |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Itajubá |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação |
| dc.publisher.initials.fl_str_mv |
UNIFEI |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação |
| publisher.none.fl_str_mv |
Universidade Federal de Itajubá |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFEI (RIUNIFEI) instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
| instname_str |
Universidade Federal de Itajubá (UNIFEI) |
| instacron_str |
UNIFEI |
| institution |
UNIFEI |
| reponame_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
| collection |
Repositório Institucional da UNIFEI (RIUNIFEI) |
| bitstream.url.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4135/2/license.txt https://repositorio.unifei.edu.br/jspui/bitstream/123456789/4135/1/Disserta%c3%a7%c3%a3o_2024117.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 7479da9c06f5a55c6cc29ac9a244e8e8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI) |
| repository.mail.fl_str_mv |
repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br |
| _version_ |
1854751282512789504 |