Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Doutorado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/12564 |
Resumo: | People with severe physical disabilities are unable to use standard robotic wheelchairs, which generally demands some motor skills, and therefore total usage of associate muscles. Robotic wheelchairs commanded by Brain-Computer Interfaces (BCIs) based on Electroencephalography (EEG) have demonstrated to be an alternative for these end-users, as such systems translate brain patterns ongoing EEG signals into control commands. However, BCIs relying on local processing encounter limitations in power, scalability, and real-time. In general, existing robotic wheelchairs commanded by BCIs require powerful hardware for high speed signal processing. On the other hand, end-users need a long training process for safely driving these devices. As a solution, cloud-based BCIs and cloud robotics have emerged, leveraging cloud computing for high-performance data processing, storage, and analysis. This integration empowers advanced and adaptive robotic assistance, transforming tele-rehabilitation and e-health applications for people with disabilities. However, integrating cloud computing with BCIs introduces its own set of challenges. These include an efficient and reliable transmission of large volumes of data and stable communication between the brain signal sensor, cloud infrastructure, and robotic wheelchair. To address these challenges, this thesis proposes a novel cloud-BCI system for conveying wheelchair commands through the use of Steady-State Visual Evoked Potential (SSVEP), Compressive Sensing (CS), and a communication framework. The system enhances Information Transfer Rate (ITR), ensuring stable communication among the BCI, cloud infrastructure, and robotic wheelchair. Leveraging cloud Service-Oriented architecture and Robotic Operating System (ROS), the system allows for easy integration of diverse robotic platforms, and provides flexibility to integrate various protocols, classifiers, metrics, and command techniques. In conclusion, the cloud-BCI system developed here demonstrates to be an efficient and flexible solution for commanding a robotic wheelchair, making it a valuable tool for researchers and developers in the field of assistive technologies, tele-rehabilitation, and training scenarios. |
| id |
UFES_0b65f935ebe7c330c81e30d9aacb8adc |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/12564 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchairInterface Cérebro-ComputadorCompressive SensingInternet das coisasCadeira de rodas robóticaPotenciais Evocados Visuais de Estado EstávelRobótica em nuvemEngenharia ElétricaPeople with severe physical disabilities are unable to use standard robotic wheelchairs, which generally demands some motor skills, and therefore total usage of associate muscles. Robotic wheelchairs commanded by Brain-Computer Interfaces (BCIs) based on Electroencephalography (EEG) have demonstrated to be an alternative for these end-users, as such systems translate brain patterns ongoing EEG signals into control commands. However, BCIs relying on local processing encounter limitations in power, scalability, and real-time. In general, existing robotic wheelchairs commanded by BCIs require powerful hardware for high speed signal processing. On the other hand, end-users need a long training process for safely driving these devices. As a solution, cloud-based BCIs and cloud robotics have emerged, leveraging cloud computing for high-performance data processing, storage, and analysis. This integration empowers advanced and adaptive robotic assistance, transforming tele-rehabilitation and e-health applications for people with disabilities. However, integrating cloud computing with BCIs introduces its own set of challenges. These include an efficient and reliable transmission of large volumes of data and stable communication between the brain signal sensor, cloud infrastructure, and robotic wheelchair. To address these challenges, this thesis proposes a novel cloud-BCI system for conveying wheelchair commands through the use of Steady-State Visual Evoked Potential (SSVEP), Compressive Sensing (CS), and a communication framework. The system enhances Information Transfer Rate (ITR), ensuring stable communication among the BCI, cloud infrastructure, and robotic wheelchair. Leveraging cloud Service-Oriented architecture and Robotic Operating System (ROS), the system allows for easy integration of diverse robotic platforms, and provides flexibility to integrate various protocols, classifiers, metrics, and command techniques. In conclusion, the cloud-BCI system developed here demonstrates to be an efficient and flexible solution for commanding a robotic wheelchair, making it a valuable tool for researchers and developers in the field of assistive technologies, tele-rehabilitation, and training scenarios.Pessoas com graves deficiências físicas são incapazes de usar cadeiras de rodas robóticas padrão, que geralmente exigem algumas habilidades motoras, e, portanto, o uso total dos músculos associados. Cadeiras de rodas robóticas comandadas por Interfaces CérebroComputador (BCIs) baseadas em Eletroencefalografia (EEG) têm se mostrado uma alternativa para esses usuários finais, pois esses sistemas traduzem padrões cerebrais em sinais EEG em comandos de controle. No entanto, BCIs que dependem de processamento local encontram limitações em potência, escalabilidade e tempo real. Em geral, cadeiras de rodas robóticas existentes comandadas por BCIs requerem hardware potente para processamento de sinal em alta velocidade. Por outro lado, os usuários finais precisam de um longo processo de treinamento para dirigir esses dispositivos com segurança. Como solução, BCIs baseados em nuvem e robótica em nuvem surgiram, aproveitando a computação em nuvem para processamento, armazenamento e análise de dados de alta performance. Essa integração capacita assistência robótica avançada e adaptativa, transformando aplicações de tele-reabilitação e e-saúde para pessoas com deficiência. No entanto, a integração da computação em nuvem com BCIs apresenta seu próprio conjunto de desafios. Isso inclui uma transmissão eficiente e confiável de grandes volumes de dados e comunicação estável entre o sensor de sinais cerebrais, infraestrutura em nuvem e cadeira de rodas robótica. Para abordar esses desafios, esta tese propõe um novo sistema de BCI em nuvem para transmitir comandos de cadeira de rodas por meio do uso de Potencial Evocado Visual de Estado Estável (SSVEP), Compressive Sensing (CS) e um framework de comunicação. O sistema melhora a Taxa de Transferência de Informação (ITR), garantindo comunicação estável entre o BCI, infraestrutura em nuvem e cadeira de rodas robótica. Alavancando a arquitetura orientada a serviços em nuvem e o Sistema Operacional Robótico (ROS), o sistema permite fácil integração de diversas plataformas robóticas e fornece flexibilidade para integrar vários protocolos, classificadores, métricas e técnicas de comando. Em conclusão, o sistema de BCI em nuvem desenvolvido aqui demonstra ser uma solução eficiente e flexível para comandar uma cadeira de rodas robótica, tornando-se uma ferramenta valiosa para pesquisadores e desenvolvedores no campo de tecnologias assistivas, tele-reabilitação e cenários de treinamento.Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal do Espírito SantoBRDoutorado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaBastos Filho, Teodiano Freirehttps://orcid.org/0000000211852773http://lattes.cnpq.br/3761585497791105https://orcid.org/0000-0001-7401-899Xhttp://lattes.cnpq.br/7555679246370907Naves, Eduardo Lazaro MartinsSa, Antonio Mauricio Ferreira Leite Miranda deFloriano, Alan Silva da PazKrishnan, SridarSlawinski, EmanuelFlor, Hamilton Rivera2024-05-29T20:55:27Z2024-05-29T20:55:27Z2023-09-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/12564porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-08-20T07:29:03Zoai:repositorio.ufes.br:10/12564Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-08-20T07:29:03Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
| dc.title.none.fl_str_mv |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair |
| title |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair |
| spellingShingle |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair Flor, Hamilton Rivera Interface Cérebro-Computador Compressive Sensing Internet das coisas Cadeira de rodas robótica Potenciais Evocados Visuais de Estado Estável Robótica em nuvem Engenharia Elétrica |
| title_short |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair |
| title_full |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair |
| title_fullStr |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair |
| title_full_unstemmed |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair |
| title_sort |
Brain-computer interface based on compressive sensing and steady-state visual evoked potentials applied to command a robotic wheelchair |
| author |
Flor, Hamilton Rivera |
| author_facet |
Flor, Hamilton Rivera |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Bastos Filho, Teodiano Freire https://orcid.org/0000000211852773 http://lattes.cnpq.br/3761585497791105 https://orcid.org/0000-0001-7401-899X http://lattes.cnpq.br/7555679246370907 Naves, Eduardo Lazaro Martins Sa, Antonio Mauricio Ferreira Leite Miranda de Floriano, Alan Silva da Paz Krishnan, Sridar Slawinski, Emanuel |
| dc.contributor.author.fl_str_mv |
Flor, Hamilton Rivera |
| dc.subject.por.fl_str_mv |
Interface Cérebro-Computador Compressive Sensing Internet das coisas Cadeira de rodas robótica Potenciais Evocados Visuais de Estado Estável Robótica em nuvem Engenharia Elétrica |
| topic |
Interface Cérebro-Computador Compressive Sensing Internet das coisas Cadeira de rodas robótica Potenciais Evocados Visuais de Estado Estável Robótica em nuvem Engenharia Elétrica |
| description |
People with severe physical disabilities are unable to use standard robotic wheelchairs, which generally demands some motor skills, and therefore total usage of associate muscles. Robotic wheelchairs commanded by Brain-Computer Interfaces (BCIs) based on Electroencephalography (EEG) have demonstrated to be an alternative for these end-users, as such systems translate brain patterns ongoing EEG signals into control commands. However, BCIs relying on local processing encounter limitations in power, scalability, and real-time. In general, existing robotic wheelchairs commanded by BCIs require powerful hardware for high speed signal processing. On the other hand, end-users need a long training process for safely driving these devices. As a solution, cloud-based BCIs and cloud robotics have emerged, leveraging cloud computing for high-performance data processing, storage, and analysis. This integration empowers advanced and adaptive robotic assistance, transforming tele-rehabilitation and e-health applications for people with disabilities. However, integrating cloud computing with BCIs introduces its own set of challenges. These include an efficient and reliable transmission of large volumes of data and stable communication between the brain signal sensor, cloud infrastructure, and robotic wheelchair. To address these challenges, this thesis proposes a novel cloud-BCI system for conveying wheelchair commands through the use of Steady-State Visual Evoked Potential (SSVEP), Compressive Sensing (CS), and a communication framework. The system enhances Information Transfer Rate (ITR), ensuring stable communication among the BCI, cloud infrastructure, and robotic wheelchair. Leveraging cloud Service-Oriented architecture and Robotic Operating System (ROS), the system allows for easy integration of diverse robotic platforms, and provides flexibility to integrate various protocols, classifiers, metrics, and command techniques. In conclusion, the cloud-BCI system developed here demonstrates to be an efficient and flexible solution for commanding a robotic wheelchair, making it a valuable tool for researchers and developers in the field of assistive technologies, tele-rehabilitation, and training scenarios. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-21 2024-05-29T20:55:27Z 2024-05-29T20:55:27Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/12564 |
| url |
http://repositorio.ufes.br/handle/10/12564 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Doutorado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Doutorado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1834479067789787136 |