Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Caon, Daniel Régis Sarmento
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Informática
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
HTK
004
Link de acesso: http://repositorio.ufes.br/handle/10/6390
Resumo: This work aims to provide automatic cognitive assistance via speech interface, to the elderly who live alone, at risk situation. Distress expressions and voice commands are part of the target vocabulary for speech recognition. Throughout the work, the large vocabulary continuous speech recognition system Julius is used in conjunction with the Hidden Markov Model Toolkit (HTK). The system Julius has its main features described, including its modification. This modification is part of the contribution which is in this work, including the detection of distress expressions ( situations of speech which suggest emergency). Four different languages were provided as target for recognition: French, Dutch, Spanish and English. In this same sequence of languages (determined by data availability and the local of scenarios for the integration of systems) theoretical studies and experiments were conducted to solve the need of working with each new configuration. This work includes studies of the French and Dutch languages. Initial experiments (in French) were made with adaptation of hidden Markov models and were analyzed by cross validation. In order to perform a new demonstration in Dutch, acoustic and language models were built and the system was integrated with other auxiliary modules (such as voice activity detector and the dialogue system). Results of speech recognition after acoustic adaptation to a specific speaker (and the creation of language models for a specific scenario to demonstrate the system) showed 86.39 % accuracy rate of sentence for the Dutch acoustic models. The same data shows 94.44 % semantical accuracy rate of sentence.
id UFES_3cd016becab9a444f1e80e47509b4618
oai_identifier_str oai:repositorio.ufes.br:10/6390
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processingAutomatic speech recognitionHidden Markov modelsAcoustic modelingHTKJuliusK-FoldProcessamento de sinais de falaModelos ocultos de MarkovModelagem acústicaProcessamento de sinaisInterfaces de usuário (Sistema de computador)Reconhecimento automático da vozSistemas de reconhecimento de padrõesCiência da Computação004This work aims to provide automatic cognitive assistance via speech interface, to the elderly who live alone, at risk situation. Distress expressions and voice commands are part of the target vocabulary for speech recognition. Throughout the work, the large vocabulary continuous speech recognition system Julius is used in conjunction with the Hidden Markov Model Toolkit (HTK). The system Julius has its main features described, including its modification. This modification is part of the contribution which is in this work, including the detection of distress expressions ( situations of speech which suggest emergency). Four different languages were provided as target for recognition: French, Dutch, Spanish and English. In this same sequence of languages (determined by data availability and the local of scenarios for the integration of systems) theoretical studies and experiments were conducted to solve the need of working with each new configuration. This work includes studies of the French and Dutch languages. Initial experiments (in French) were made with adaptation of hidden Markov models and were analyzed by cross validation. In order to perform a new demonstration in Dutch, acoustic and language models were built and the system was integrated with other auxiliary modules (such as voice activity detector and the dialogue system). Results of speech recognition after acoustic adaptation to a specific speaker (and the creation of language models for a specific scenario to demonstrate the system) showed 86.39 % accuracy rate of sentence for the Dutch acoustic models. The same data shows 94.44 % semantical accuracy rate of sentence.Este trabalho visa prover assistência cognitiva automática via interface de fala, à idosos que moram sozinhos, em situação de risco. Expressões de angústia e comandos vocais fazem parte do vocabulário alvo de reconhecimento de fala. Durante todo o trabalho, o sistema de reconhecimento de fala contínua de grande vocabulário Julius é utilizado em conjunto com o Hidden Markov Model Toolkit(HTK). O sistema Julius tem suas principais características descritas, tendo inclusive sido modificado. Tal modificação é parte da contribuição desse estudo, assim como a detecção de expressões de angústia (situações de fala que caracterizam emergência). Quatro diferentes linguas foram previstas como alvo de reconhecimento: Francês, Holandês, Espanhol e Inglês. Nessa mesma ordem de linguas (determinadas pela disponibilidade de dados e local de cenários de integração de sistemas) os estudos teóricos e experimentos foram conduzidos para suprir a necessidade de trabalhar com cada nova configuração. Este trabalho inclui estudos feitos com as linguas Francês e Holandês. Experimentos iniciais (em Francês) foram feitos com adaptação de modelos ocultos de Markov e analisados por validação cruzada. Para realizar uma nova demonstração em Holandês, modelos acústicos e de linguagem foram construídos e o sistema foi integrado a outros módulos auxiliares (como o detector de atividades vocais e sistema de diálogo). Resultados de reconhecimento de fala após adaptação dos modelos acústicos à um locutor específico (e da criação de modelos de linguagem específicos para um cenário de demonstração do sistema) demonstraram 86,39% de taxa de acerto de sentença para os modelos acústicos holandeses. Os mesmos dados demonstram 94,44% de taxa de acerto semântico de sentença.Universidade Federal do Espírito SantoBRMestrado em InformáticaCentro TecnológicoUFESPrograma de Pós-Graduação em InformáticaAndreão, Rodrigo VarejãoRauber, Thomas WalterVarejão, Flávio MiguelYnoguti, Carlos AlbertoCaon, Daniel Régis Sarmento2016-12-23T14:33:42Z2011-03-232016-12-23T14:33:42Z2010-08-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfCAON, Daniel Régis Sarmento. Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing. 2010. 70 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2010.http://repositorio.ufes.br/handle/10/6390enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-07-17T17:00:53Zoai:repositorio.ufes.br:10/6390Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-07-17T17:00:53Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
title Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
spellingShingle Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
Caon, Daniel Régis Sarmento
Automatic speech recognition
Hidden Markov models
Acoustic modeling
HTK
Julius
K-Fold
Processamento de sinais de fala
Modelos ocultos de Markov
Modelagem acústica
Processamento de sinais
Interfaces de usuário (Sistema de computador)
Reconhecimento automático da voz
Sistemas de reconhecimento de padrões
Ciência da Computação
004
title_short Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
title_full Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
title_fullStr Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
title_full_unstemmed Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
title_sort Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing
author Caon, Daniel Régis Sarmento
author_facet Caon, Daniel Régis Sarmento
author_role author
dc.contributor.none.fl_str_mv Andreão, Rodrigo Varejão
Rauber, Thomas Walter
Varejão, Flávio Miguel
Ynoguti, Carlos Alberto
dc.contributor.author.fl_str_mv Caon, Daniel Régis Sarmento
dc.subject.por.fl_str_mv Automatic speech recognition
Hidden Markov models
Acoustic modeling
HTK
Julius
K-Fold
Processamento de sinais de fala
Modelos ocultos de Markov
Modelagem acústica
Processamento de sinais
Interfaces de usuário (Sistema de computador)
Reconhecimento automático da voz
Sistemas de reconhecimento de padrões
Ciência da Computação
004
topic Automatic speech recognition
Hidden Markov models
Acoustic modeling
HTK
Julius
K-Fold
Processamento de sinais de fala
Modelos ocultos de Markov
Modelagem acústica
Processamento de sinais
Interfaces de usuário (Sistema de computador)
Reconhecimento automático da voz
Sistemas de reconhecimento de padrões
Ciência da Computação
004
description This work aims to provide automatic cognitive assistance via speech interface, to the elderly who live alone, at risk situation. Distress expressions and voice commands are part of the target vocabulary for speech recognition. Throughout the work, the large vocabulary continuous speech recognition system Julius is used in conjunction with the Hidden Markov Model Toolkit (HTK). The system Julius has its main features described, including its modification. This modification is part of the contribution which is in this work, including the detection of distress expressions ( situations of speech which suggest emergency). Four different languages were provided as target for recognition: French, Dutch, Spanish and English. In this same sequence of languages (determined by data availability and the local of scenarios for the integration of systems) theoretical studies and experiments were conducted to solve the need of working with each new configuration. This work includes studies of the French and Dutch languages. Initial experiments (in French) were made with adaptation of hidden Markov models and were analyzed by cross validation. In order to perform a new demonstration in Dutch, acoustic and language models were built and the system was integrated with other auxiliary modules (such as voice activity detector and the dialogue system). Results of speech recognition after acoustic adaptation to a specific speaker (and the creation of language models for a specific scenario to demonstrate the system) showed 86.39 % accuracy rate of sentence for the Dutch acoustic models. The same data shows 94.44 % semantical accuracy rate of sentence.
publishDate 2010
dc.date.none.fl_str_mv 2010-08-27
2011-03-23
2016-12-23T14:33:42Z
2016-12-23T14:33:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAON, Daniel Régis Sarmento. Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing. 2010. 70 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2010.
http://repositorio.ufes.br/handle/10/6390
identifier_str_mv CAON, Daniel Régis Sarmento. Automatic speech recognition, with large vocabulary, robustness, independence of speaker and multilingual processing. 2010. 70 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2010.
url http://repositorio.ufes.br/handle/10/6390
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Informática
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Informática
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479068752379904