Support vector machine ensemble based on feature and hyperparameter variation
| Ano de defesa: | 2011 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Informática Centro Tecnológico UFES Programa de Pós-Graduação em Informática |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/4234 |
Resumo: | The support vector machine (SVM) classifier is currently considered one of the most powerful pattern recognition based techniques for solving binary classification problems. To further increase the accuracy of an individual SVM, a well-established approach relies on using a SVM ensemble, which is a set of accurate, divergent SVMs. In this work we investigate composing an ensemble with SVMs that differ among themselves on the feature subset and also the hyperparameter value they use. We propose a three-stage method for building an SVM ensemble. First we use complementary Genetic Ensemble Feature Selection (GEFS) searches to globally investigate the feature space, aiming to produce a set of diverse feature subsets. Further, for each produced feature subset we build a SVM with tuned hyperparameters. Finally, we employ a local search to retain an optimized, reduced set of these SVMs to ultimately comprise the ensemble. Our experiments were performed in a context of real-world industrial machine fault diagnosis. We use 2000 examples of vibration signals obtained from motor pumps installed on oil platforms. The performed experiments show that the proposed SVM ensemble method achieved superior results in comparison to other well-established classification approaches. |
| id |
UFES_54aaae270c8a44ceaa48d0080bbe623d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/4234 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Support vector machine ensemble based on feature and hyperparameter variationClassificaçãoAlgorítmos genéticosOtimização matemáticaCiência da Computação004The support vector machine (SVM) classifier is currently considered one of the most powerful pattern recognition based techniques for solving binary classification problems. To further increase the accuracy of an individual SVM, a well-established approach relies on using a SVM ensemble, which is a set of accurate, divergent SVMs. In this work we investigate composing an ensemble with SVMs that differ among themselves on the feature subset and also the hyperparameter value they use. We propose a three-stage method for building an SVM ensemble. First we use complementary Genetic Ensemble Feature Selection (GEFS) searches to globally investigate the feature space, aiming to produce a set of diverse feature subsets. Further, for each produced feature subset we build a SVM with tuned hyperparameters. Finally, we employ a local search to retain an optimized, reduced set of these SVMs to ultimately comprise the ensemble. Our experiments were performed in a context of real-world industrial machine fault diagnosis. We use 2000 examples of vibration signals obtained from motor pumps installed on oil platforms. The performed experiments show that the proposed SVM ensemble method achieved superior results in comparison to other well-established classification approaches.Classificadores do tipo máquina de vetores de suporte (SVM) são atualmente considerados uma das técnicas mais poderosas para se resolver problemas de classificação com duas classes. Para aumentar o desempenho alcançado por classificadores SVM individuais, uma abordagem bem estabelecida é usar uma combinação de SVMs, a qual corresponde a um conjunto de classificadores SVMs que são, simultaneamente, individualmente precisos e coletivamente divergentes em suas decisões. Este trabalho propõe uma abordagem para se criar combinações de SVMs, baseada em um processo de três estágios. Inicialmente, são usadas execuções complementares de uma busca baseada em algoritmos genéticos (GEFS), com o objetivo de investigar globalmente o espaço de características para definir um conjunto de subconjuntos de características. Em seguida, para cada um desses subconjuntos de características definidos, uma SVM que usa parâmetros otimizados é construída. Por fim, é empregada uma busca local com o objetivo de selecionar um subconjunto otimizado dessas SVMs, e assim formar a combinação de SVMs que é finalmente produzida. Os experimentos foram realizados num contexto de detecção de defeitos em máquinas industriais. Foram usados 2000 exemplos de sinais de vibração de moto bombas instaladas em plataformas de petróleo. Os experimentos realizados mostram que o método proposto para se criar combinação de SVMs apresentou um desempenho superior em comparação a outras abordagens de classificação bem estabelecidas.Universidade Federal do Espírito SantoBRMestrado em InformáticaCentro TecnológicoUFESPrograma de Pós-Graduação em InformáticaVarejão, Flávio MiguelRauber, Thomas WalterKrohling, Renato AntônioWandekokem, Estefhan Dazzi2016-08-29T15:33:14Z2016-07-112016-08-29T15:33:14Z2011-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfWANDEKOKEM, Estefhan Dazzi. Support vector machine ensemble based on feature and hyperparameter variation. 2011. 74 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2011.http://repositorio.ufes.br/handle/10/4234enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-07-17T16:59:40Zoai:repositorio.ufes.br:10/4234Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-07-17T16:59:40Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
| dc.title.none.fl_str_mv |
Support vector machine ensemble based on feature and hyperparameter variation |
| title |
Support vector machine ensemble based on feature and hyperparameter variation |
| spellingShingle |
Support vector machine ensemble based on feature and hyperparameter variation Wandekokem, Estefhan Dazzi Classificação Algorítmos genéticos Otimização matemática Ciência da Computação 004 |
| title_short |
Support vector machine ensemble based on feature and hyperparameter variation |
| title_full |
Support vector machine ensemble based on feature and hyperparameter variation |
| title_fullStr |
Support vector machine ensemble based on feature and hyperparameter variation |
| title_full_unstemmed |
Support vector machine ensemble based on feature and hyperparameter variation |
| title_sort |
Support vector machine ensemble based on feature and hyperparameter variation |
| author |
Wandekokem, Estefhan Dazzi |
| author_facet |
Wandekokem, Estefhan Dazzi |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Varejão, Flávio Miguel Rauber, Thomas Walter Krohling, Renato Antônio |
| dc.contributor.author.fl_str_mv |
Wandekokem, Estefhan Dazzi |
| dc.subject.por.fl_str_mv |
Classificação Algorítmos genéticos Otimização matemática Ciência da Computação 004 |
| topic |
Classificação Algorítmos genéticos Otimização matemática Ciência da Computação 004 |
| description |
The support vector machine (SVM) classifier is currently considered one of the most powerful pattern recognition based techniques for solving binary classification problems. To further increase the accuracy of an individual SVM, a well-established approach relies on using a SVM ensemble, which is a set of accurate, divergent SVMs. In this work we investigate composing an ensemble with SVMs that differ among themselves on the feature subset and also the hyperparameter value they use. We propose a three-stage method for building an SVM ensemble. First we use complementary Genetic Ensemble Feature Selection (GEFS) searches to globally investigate the feature space, aiming to produce a set of diverse feature subsets. Further, for each produced feature subset we build a SVM with tuned hyperparameters. Finally, we employ a local search to retain an optimized, reduced set of these SVMs to ultimately comprise the ensemble. Our experiments were performed in a context of real-world industrial machine fault diagnosis. We use 2000 examples of vibration signals obtained from motor pumps installed on oil platforms. The performed experiments show that the proposed SVM ensemble method achieved superior results in comparison to other well-established classification approaches. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-02-23 2016-08-29T15:33:14Z 2016-07-11 2016-08-29T15:33:14Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
WANDEKOKEM, Estefhan Dazzi. Support vector machine ensemble based on feature and hyperparameter variation. 2011. 74 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2011. http://repositorio.ufes.br/handle/10/4234 |
| identifier_str_mv |
WANDEKOKEM, Estefhan Dazzi. Support vector machine ensemble based on feature and hyperparameter variation. 2011. 74 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2011. |
| url |
http://repositorio.ufes.br/handle/10/4234 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Informática Centro Tecnológico UFES Programa de Pós-Graduação em Informática |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Informática Centro Tecnológico UFES Programa de Pós-Graduação em Informática |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1834479067792932864 |