A brain-computer interface architecture based on motor mental tasks and music imagery

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Benevides, Alessandro Botti
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/9709
Resumo: This present research proposes a Brain-Computer Interface (BCI) architecture adapted to motor mental tasks and music imagery. For that purpose the statistical properties of the electroencephalographic signal (EEG) were studied, such as its probability distribution function, stationarity, correlation and signal-to-noise ratio (SNR), in order to obtain a minimal empirical and well-founded parameter system for online classification. Stationarity tests were used to estimate the length of the time windows and a minimum length of 1.28 s was obtained. Four algorithms for artifact reduction were tested: threshold analysis, EEG filtering and two Independent Component Analysis (ICA) algorithms. This analysis concluded that the algorithm fastICA is suitable for online artifact removal. The feature extraction used the Power Spectral Density (PSD) and three methods were tested for automatic selection of features in order to have a training step independent of the mental task paradigm, with the best performance obtained with the Kullback-Leibler symmetric divergence method. For the classification, the Linear Discriminant Analysis (LDA) was used and a step of reclassification is suggested. A study of four motor mental tasks and a non-motor related mental task is performed by comparing their periodograms, Event-Related desynchronization/synchronization (ERD/ERS) and SNR. The mental tasks are the imagination of either movement of right and left hands, both feet, rotation of a cube and sound imagery. The EEG SNR was estimated by a comparison with the correlation between the ongoing average and the final ERD/ERS curve, in which we concluded that the mental task of sound imagery would need approximately five times more epochs than the motor-related mental tasks. The ERD/ERS could be measured even for frequencies near 100 Hz, but in absolute amplitudes, the energy variation at 100 Hz was one thousand times smaller than for 10 Hz, which implies that there is a small probability of online detection for BCI applications in high frequency. Thus, most of the usable information for online processing and BCIs corresponds to the α/µ band (low frequency). Finally, the ERD/ERS scalp maps show that the main difference between the sound imagery task and the motor-related mentaltasks is the absence of ERD at the µ band, in the central electrodes, and the presence of ERD at the αband in the temporal and lateral-frontal electrodes, which correspond tothe auditory cortex, the Wernickes area and the Brocas area.
id UFES_5c88d88f5df154db114be9b8e3137fd2
oai_identifier_str oai:repositorio.ufes.br:10/9709
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling A brain-computer interface architecture based on motor mental tasks and music imageryNeurociênciasInterface cérebro-computadorEletroencefalografiaProcessamento de sinaisSistemas de reconhecimento de padrõesAnálise multivariadaEletrônica Industrial, Sistemas e Controles Eletrônicos621.3This present research proposes a Brain-Computer Interface (BCI) architecture adapted to motor mental tasks and music imagery. For that purpose the statistical properties of the electroencephalographic signal (EEG) were studied, such as its probability distribution function, stationarity, correlation and signal-to-noise ratio (SNR), in order to obtain a minimal empirical and well-founded parameter system for online classification. Stationarity tests were used to estimate the length of the time windows and a minimum length of 1.28 s was obtained. Four algorithms for artifact reduction were tested: threshold analysis, EEG filtering and two Independent Component Analysis (ICA) algorithms. This analysis concluded that the algorithm fastICA is suitable for online artifact removal. The feature extraction used the Power Spectral Density (PSD) and three methods were tested for automatic selection of features in order to have a training step independent of the mental task paradigm, with the best performance obtained with the Kullback-Leibler symmetric divergence method. For the classification, the Linear Discriminant Analysis (LDA) was used and a step of reclassification is suggested. A study of four motor mental tasks and a non-motor related mental task is performed by comparing their periodograms, Event-Related desynchronization/synchronization (ERD/ERS) and SNR. The mental tasks are the imagination of either movement of right and left hands, both feet, rotation of a cube and sound imagery. The EEG SNR was estimated by a comparison with the correlation between the ongoing average and the final ERD/ERS curve, in which we concluded that the mental task of sound imagery would need approximately five times more epochs than the motor-related mental tasks. The ERD/ERS could be measured even for frequencies near 100 Hz, but in absolute amplitudes, the energy variation at 100 Hz was one thousand times smaller than for 10 Hz, which implies that there is a small probability of online detection for BCI applications in high frequency. Thus, most of the usable information for online processing and BCIs corresponds to the α/µ band (low frequency). Finally, the ERD/ERS scalp maps show that the main difference between the sound imagery task and the motor-related mentaltasks is the absence of ERD at the µ band, in the central electrodes, and the presence of ERD at the αband in the temporal and lateral-frontal electrodes, which correspond tothe auditory cortex, the Wernickes area and the Brocas area.ResumoUniversidade Federal do Espírito SantoBRDoutorado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaBastos Filho, Teodiano FreireSarcinelli Filho, MárioFerreira, AndréFrizera Neto, AnselmoConci, AuraTierra Criollo, Carlos JulioBenevides, Alessandro Botti2018-08-02T00:01:59Z2018-08-012018-08-02T00:01:59Z2013-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/9709enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-07-17T16:58:25Zoai:repositorio.ufes.br:10/9709Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-07-17T16:58:25Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv A brain-computer interface architecture based on motor mental tasks and music imagery
title A brain-computer interface architecture based on motor mental tasks and music imagery
spellingShingle A brain-computer interface architecture based on motor mental tasks and music imagery
Benevides, Alessandro Botti
Neurociências
Interface cérebro-computador
Eletroencefalografia
Processamento de sinais
Sistemas de reconhecimento de padrões
Análise multivariada
Eletrônica Industrial, Sistemas e Controles Eletrônicos
621.3
title_short A brain-computer interface architecture based on motor mental tasks and music imagery
title_full A brain-computer interface architecture based on motor mental tasks and music imagery
title_fullStr A brain-computer interface architecture based on motor mental tasks and music imagery
title_full_unstemmed A brain-computer interface architecture based on motor mental tasks and music imagery
title_sort A brain-computer interface architecture based on motor mental tasks and music imagery
author Benevides, Alessandro Botti
author_facet Benevides, Alessandro Botti
author_role author
dc.contributor.none.fl_str_mv Bastos Filho, Teodiano Freire
Sarcinelli Filho, Mário
Ferreira, André
Frizera Neto, Anselmo
Conci, Aura
Tierra Criollo, Carlos Julio
dc.contributor.author.fl_str_mv Benevides, Alessandro Botti
dc.subject.por.fl_str_mv Neurociências
Interface cérebro-computador
Eletroencefalografia
Processamento de sinais
Sistemas de reconhecimento de padrões
Análise multivariada
Eletrônica Industrial, Sistemas e Controles Eletrônicos
621.3
topic Neurociências
Interface cérebro-computador
Eletroencefalografia
Processamento de sinais
Sistemas de reconhecimento de padrões
Análise multivariada
Eletrônica Industrial, Sistemas e Controles Eletrônicos
621.3
description This present research proposes a Brain-Computer Interface (BCI) architecture adapted to motor mental tasks and music imagery. For that purpose the statistical properties of the electroencephalographic signal (EEG) were studied, such as its probability distribution function, stationarity, correlation and signal-to-noise ratio (SNR), in order to obtain a minimal empirical and well-founded parameter system for online classification. Stationarity tests were used to estimate the length of the time windows and a minimum length of 1.28 s was obtained. Four algorithms for artifact reduction were tested: threshold analysis, EEG filtering and two Independent Component Analysis (ICA) algorithms. This analysis concluded that the algorithm fastICA is suitable for online artifact removal. The feature extraction used the Power Spectral Density (PSD) and three methods were tested for automatic selection of features in order to have a training step independent of the mental task paradigm, with the best performance obtained with the Kullback-Leibler symmetric divergence method. For the classification, the Linear Discriminant Analysis (LDA) was used and a step of reclassification is suggested. A study of four motor mental tasks and a non-motor related mental task is performed by comparing their periodograms, Event-Related desynchronization/synchronization (ERD/ERS) and SNR. The mental tasks are the imagination of either movement of right and left hands, both feet, rotation of a cube and sound imagery. The EEG SNR was estimated by a comparison with the correlation between the ongoing average and the final ERD/ERS curve, in which we concluded that the mental task of sound imagery would need approximately five times more epochs than the motor-related mental tasks. The ERD/ERS could be measured even for frequencies near 100 Hz, but in absolute amplitudes, the energy variation at 100 Hz was one thousand times smaller than for 10 Hz, which implies that there is a small probability of online detection for BCI applications in high frequency. Thus, most of the usable information for online processing and BCIs corresponds to the α/µ band (low frequency). Finally, the ERD/ERS scalp maps show that the main difference between the sound imagery task and the motor-related mentaltasks is the absence of ERD at the µ band, in the central electrodes, and the presence of ERD at the αband in the temporal and lateral-frontal electrodes, which correspond tothe auditory cortex, the Wernickes area and the Brocas area.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-30
2018-08-02T00:01:59Z
2018-08-01
2018-08-02T00:01:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/9709
url http://repositorio.ufes.br/handle/10/9709
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479090239799296