Métodos de aprendizagem de máquina aplicados à ciência do petróleo
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
Mestrado em Química |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Química
|
| Departamento: |
Centro de Ciências Exatas
|
| País: |
BR
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/20655 |
Resumo: | This study aims to present a new machine learning approach to classify crude oil samples based on their physicochemical properties, such as sulfur (S) concentration, total acid number (TAN), and API gravity (American Petroleum Institute). Crude oil is a complex mixture predominantly composed of carbon and hydrogen substances, along with heteroatomic elements such as nitrogen, oxygen, and sulfur. This complexity makes precise analysis essential, especially to avoid problems throughout the production chain. Proposed method seeks to overcome the limitations of traditional techniques, which are often time-consuming, require large sample volumes, and use excessive solvents. As a promising alternative, spectroscopic techniques have been employed for crude oil characterization, and machine learning methods have demonstrated high efficiency in analyzing complex mixtures. These methods offer faster and more accurate exploration of chemical variability compared to conventional approaches. This study, 196 crude oil samples, varying in sulfur content, TAN, and API gravity, were analyzed. The use of SVM (Support Vector Machine) ensembles was explored as a powerful approach to improve classification performance by reducing the variability of individual models, increasing robustness against overfitting, and enabling better generalization than a single model. To evaluate performance, criteria such as sensitivity, specificity, error rate, Matthews correlation coefficient, and accuracy were used, comparing SVM ensemble models with PLS-DA and standard SVM. The results demonstrated that the combination of NIR spectroscopy (Near Infrared Spectroscopy) with SVM ensemble models is an efficient and reliable method for the simultaneous qualification of sulfur content, TAN, and API gravity in crude oils. This is because SVM ensembles tend to perform better, reducing overfitting. Moreover, they create more robust models, reduce variance, and increase model stability. |
| id |
UFES_69d765cd8e2f06b9bf789fb0cfff9abb |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/20655 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
Ferreira, Rafael de Queirozhttps://orcid.org/0000-0002-5190-8508http://lattes.cnpq.br/5053247764430323 Filgueiras, Paulo Robertohttps://orcid.org/0000-0003-2617-1601http://lattes.cnpq.br/1907915547207861Barboza, Maria Carolina da Vitória Alvarengahttps://orcid.org/0009-0007-7744-4434http://lattes.cnpq.br/6535362149640541 Oliveira, Emanuele Catarina da Silvahttps://orcid.org/0000-0003-0699-6104http://lattes.cnpq.br/1715851915787164 Souza, Murilo de Oliveirahttps://orcid.org/0000-0002-5299-564Xhttp://lattes.cnpq.br/18326439122293122025-11-28T20:45:42Z2025-11-28T20:45:42Z2025-03-17This study aims to present a new machine learning approach to classify crude oil samples based on their physicochemical properties, such as sulfur (S) concentration, total acid number (TAN), and API gravity (American Petroleum Institute). Crude oil is a complex mixture predominantly composed of carbon and hydrogen substances, along with heteroatomic elements such as nitrogen, oxygen, and sulfur. This complexity makes precise analysis essential, especially to avoid problems throughout the production chain. Proposed method seeks to overcome the limitations of traditional techniques, which are often time-consuming, require large sample volumes, and use excessive solvents. As a promising alternative, spectroscopic techniques have been employed for crude oil characterization, and machine learning methods have demonstrated high efficiency in analyzing complex mixtures. These methods offer faster and more accurate exploration of chemical variability compared to conventional approaches. This study, 196 crude oil samples, varying in sulfur content, TAN, and API gravity, were analyzed. The use of SVM (Support Vector Machine) ensembles was explored as a powerful approach to improve classification performance by reducing the variability of individual models, increasing robustness against overfitting, and enabling better generalization than a single model. To evaluate performance, criteria such as sensitivity, specificity, error rate, Matthews correlation coefficient, and accuracy were used, comparing SVM ensemble models with PLS-DA and standard SVM. The results demonstrated that the combination of NIR spectroscopy (Near Infrared Spectroscopy) with SVM ensemble models is an efficient and reliable method for the simultaneous qualification of sulfur content, TAN, and API gravity in crude oils. This is because SVM ensembles tend to perform better, reducing overfitting. Moreover, they create more robust models, reduce variance, and increase model stability.Este estudo tem como objetivo apresentar uma nova abordagem de aprendizado de máquina para classificar amostras de petróleo bruto com base em suas propriedades físico-químicas, como concentração de enxofre (S), número de acidez total (NAT) e densidade API (Americam Petroleum Institute). O petróleo bruto é uma mistura complexa, composta predominantemente por substâncias de carbono e hidrogênio, além de elementos heteroatômicos, como nitrogênio, oxigênio e enxofre. Essa complexidade torna essencial uma análise precisa, especialmente para evitar problemas ao longo da cadeia de produção. O método proposto busca superar as limitações das técnicas tradicionais, que frequentemente são demoradas, consomem grandes volumes de amostras e utilizam solventes em excesso. Como alternativa promissora, técnicas espectroscópicas têm sido utilizadas para a caracterização de petróleo, e métodos de aprendizado de máquina têm demonstrado alta eficiência na análise de misturas complexas. Esses métodos oferecem uma exploração mais rápida e precisa da variabilidade química em comparação com abordagens convencionais. Neste estudo, 196 amostras de petróleo bruto, variando em teor de enxofre, NAT e densidade API, foram analisadas. O uso de SVM ensemble (Support Vector Machines) foi explorado como uma abordagem poderosa para melhorar o desempenho da classificação, reduzindo a variabilidade dos modelos individuais, aumentando a robustez contra o overfitting e permitindo um desempenho preditivo mais confiável do que o de um modelo único. Para avaliar o desempenho, foram utilizados critérios como sensibilidade, especificidade, taxa de erro, coeficiente de correlação de Matthews e precisão, comparando os modelos SVM ensemble com PLS-DA e SVM. Os resultados demonstraram que a combinação de espectroscopia NIR (Espectroscopia do Infravermelho Próximo) com modelos de SVM ensemble é um método eficiente e confiável para a classificação simultânea de teor de enxofre, NAT e densidade API em petróleos brutos. Isso ocorre porque o SVM ensemble tende a apresentar melhor desempenho preditivo, reduzindo o overfitting. Além disso, ele cria modelos mais robustos, reduz a variância e aumenta a estabilidade do modelo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Texthttp://repositorio.ufes.br/handle/10/20655porUniversidade Federal do Espírito SantoMestrado em QuímicaPrograma de Pós-Graduação em QuímicaUFESBRCentro de Ciências ExatasQuímicaSVM ensemblePetróleoNIRMétodos de aprendizagem de máquina aplicados à ciência do petróleoMachine learning methods applied to petroleum science and biofuelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/474f5b06-b9ff-4d91-a5e5-90f29ff6d229/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALMariaCarolinadaVitóriaAlvarengaBarboza-2025-Dissertacao.pdfapplication/pdf7024292http://repositorio.ufes.br/bitstreams/02fe587b-b928-44fb-91f9-88398274ee8d/download3068104f48cc64f8ba930a3f70195da2MD54THUMBNAILMockup acadêmico minimalista.pngimage/png3220636http://repositorio.ufes.br/bitstreams/0957a0d3-feff-425b-b150-6150b8d90f29/downloadadd992fac48e869c446a2867e200ed78MD5310/206552025-12-01 15:56:48.646oai:repositorio.ufes.br:10/20655http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-12-01T15:56:48Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.none.fl_str_mv |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo |
| dc.title.alternative.none.fl_str_mv |
Machine learning methods applied to petroleum science and biofuels |
| title |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo |
| spellingShingle |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo Barboza, Maria Carolina da Vitória Alvarenga Química SVM ensemble Petróleo NIR |
| title_short |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo |
| title_full |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo |
| title_fullStr |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo |
| title_full_unstemmed |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo |
| title_sort |
Métodos de aprendizagem de máquina aplicados à ciência do petróleo |
| author |
Barboza, Maria Carolina da Vitória Alvarenga |
| author_facet |
Barboza, Maria Carolina da Vitória Alvarenga |
| author_role |
author |
| dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0009-0007-7744-4434 |
| dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/6535362149640541 |
| dc.contributor.advisor-co1.fl_str_mv |
Ferreira, Rafael de Queiroz |
| dc.contributor.advisor-co1ID.fl_str_mv |
https://orcid.org/0000-0002-5190-8508 |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/5053247764430323 |
| dc.contributor.advisor1.fl_str_mv |
Filgueiras, Paulo Roberto |
| dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0003-2617-1601 |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1907915547207861 |
| dc.contributor.author.fl_str_mv |
Barboza, Maria Carolina da Vitória Alvarenga |
| dc.contributor.referee1.fl_str_mv |
Oliveira, Emanuele Catarina da Silva |
| dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0003-0699-6104 |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1715851915787164 |
| dc.contributor.referee2.fl_str_mv |
Souza, Murilo de Oliveira |
| dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0002-5299-564X |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1832643912229312 |
| contributor_str_mv |
Ferreira, Rafael de Queiroz Filgueiras, Paulo Roberto Oliveira, Emanuele Catarina da Silva Souza, Murilo de Oliveira |
| dc.subject.cnpq.fl_str_mv |
Química |
| topic |
Química SVM ensemble Petróleo NIR |
| dc.subject.por.fl_str_mv |
SVM ensemble Petróleo NIR |
| description |
This study aims to present a new machine learning approach to classify crude oil samples based on their physicochemical properties, such as sulfur (S) concentration, total acid number (TAN), and API gravity (American Petroleum Institute). Crude oil is a complex mixture predominantly composed of carbon and hydrogen substances, along with heteroatomic elements such as nitrogen, oxygen, and sulfur. This complexity makes precise analysis essential, especially to avoid problems throughout the production chain. Proposed method seeks to overcome the limitations of traditional techniques, which are often time-consuming, require large sample volumes, and use excessive solvents. As a promising alternative, spectroscopic techniques have been employed for crude oil characterization, and machine learning methods have demonstrated high efficiency in analyzing complex mixtures. These methods offer faster and more accurate exploration of chemical variability compared to conventional approaches. This study, 196 crude oil samples, varying in sulfur content, TAN, and API gravity, were analyzed. The use of SVM (Support Vector Machine) ensembles was explored as a powerful approach to improve classification performance by reducing the variability of individual models, increasing robustness against overfitting, and enabling better generalization than a single model. To evaluate performance, criteria such as sensitivity, specificity, error rate, Matthews correlation coefficient, and accuracy were used, comparing SVM ensemble models with PLS-DA and standard SVM. The results demonstrated that the combination of NIR spectroscopy (Near Infrared Spectroscopy) with SVM ensemble models is an efficient and reliable method for the simultaneous qualification of sulfur content, TAN, and API gravity in crude oils. This is because SVM ensembles tend to perform better, reducing overfitting. Moreover, they create more robust models, reduce variance, and increase model stability. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-11-28T20:45:42Z |
| dc.date.available.fl_str_mv |
2025-11-28T20:45:42Z |
| dc.date.issued.fl_str_mv |
2025-03-17 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/20655 |
| url |
http://repositorio.ufes.br/handle/10/20655 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Química |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
| dc.publisher.initials.fl_str_mv |
UFES |
| dc.publisher.country.fl_str_mv |
BR |
| dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Química |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/474f5b06-b9ff-4d91-a5e5-90f29ff6d229/download http://repositorio.ufes.br/bitstreams/02fe587b-b928-44fb-91f9-88398274ee8d/download http://repositorio.ufes.br/bitstreams/0957a0d3-feff-425b-b150-6150b8d90f29/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 3068104f48cc64f8ba930a3f70195da2 add992fac48e869c446a2867e200ed78 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1856037476479533056 |