Métodos de aprendizagem de máquina aplicados à ciência do petróleo

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Barboza, Maria Carolina da Vitória Alvarenga
Orientador(a): Filgueiras, Paulo Roberto lattes
Banca de defesa: Oliveira, Emanuele Catarina da Silva lattes, Souza, Murilo de Oliveira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
Mestrado em Química
Programa de Pós-Graduação: Programa de Pós-Graduação em Química
Departamento: Centro de Ciências Exatas
País: BR
Palavras-chave em Português:
NIR
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufes.br/handle/10/20655
Resumo: This study aims to present a new machine learning approach to classify crude oil samples based on their physicochemical properties, such as sulfur (S) concentration, total acid number (TAN), and API gravity (American Petroleum Institute). Crude oil is a complex mixture predominantly composed of carbon and hydrogen substances, along with heteroatomic elements such as nitrogen, oxygen, and sulfur. This complexity makes precise analysis essential, especially to avoid problems throughout the production chain. Proposed method seeks to overcome the limitations of traditional techniques, which are often time-consuming, require large sample volumes, and use excessive solvents. As a promising alternative, spectroscopic techniques have been employed for crude oil characterization, and machine learning methods have demonstrated high efficiency in analyzing complex mixtures. These methods offer faster and more accurate exploration of chemical variability compared to conventional approaches. This study, 196 crude oil samples, varying in sulfur content, TAN, and API gravity, were analyzed. The use of SVM (Support Vector Machine) ensembles was explored as a powerful approach to improve classification performance by reducing the variability of individual models, increasing robustness against overfitting, and enabling better generalization than a single model. To evaluate performance, criteria such as sensitivity, specificity, error rate, Matthews correlation coefficient, and accuracy were used, comparing SVM ensemble models with PLS-DA and standard SVM. The results demonstrated that the combination of NIR spectroscopy (Near Infrared Spectroscopy) with SVM ensemble models is an efficient and reliable method for the simultaneous qualification of sulfur content, TAN, and API gravity in crude oils. This is because SVM ensembles tend to perform better, reducing overfitting. Moreover, they create more robust models, reduce variance, and increase model stability.
id UFES_69d765cd8e2f06b9bf789fb0cfff9abb
oai_identifier_str oai:repositorio.ufes.br:10/20655
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Ferreira, Rafael de Queirozhttps://orcid.org/0000-0002-5190-8508http://lattes.cnpq.br/5053247764430323 Filgueiras, Paulo Robertohttps://orcid.org/0000-0003-2617-1601http://lattes.cnpq.br/1907915547207861Barboza, Maria Carolina da Vitória Alvarengahttps://orcid.org/0009-0007-7744-4434http://lattes.cnpq.br/6535362149640541 Oliveira, Emanuele Catarina da Silvahttps://orcid.org/0000-0003-0699-6104http://lattes.cnpq.br/1715851915787164 Souza, Murilo de Oliveirahttps://orcid.org/0000-0002-5299-564Xhttp://lattes.cnpq.br/18326439122293122025-11-28T20:45:42Z2025-11-28T20:45:42Z2025-03-17This study aims to present a new machine learning approach to classify crude oil samples based on their physicochemical properties, such as sulfur (S) concentration, total acid number (TAN), and API gravity (American Petroleum Institute). Crude oil is a complex mixture predominantly composed of carbon and hydrogen substances, along with heteroatomic elements such as nitrogen, oxygen, and sulfur. This complexity makes precise analysis essential, especially to avoid problems throughout the production chain. Proposed method seeks to overcome the limitations of traditional techniques, which are often time-consuming, require large sample volumes, and use excessive solvents. As a promising alternative, spectroscopic techniques have been employed for crude oil characterization, and machine learning methods have demonstrated high efficiency in analyzing complex mixtures. These methods offer faster and more accurate exploration of chemical variability compared to conventional approaches. This study, 196 crude oil samples, varying in sulfur content, TAN, and API gravity, were analyzed. The use of SVM (Support Vector Machine) ensembles was explored as a powerful approach to improve classification performance by reducing the variability of individual models, increasing robustness against overfitting, and enabling better generalization than a single model. To evaluate performance, criteria such as sensitivity, specificity, error rate, Matthews correlation coefficient, and accuracy were used, comparing SVM ensemble models with PLS-DA and standard SVM. The results demonstrated that the combination of NIR spectroscopy (Near Infrared Spectroscopy) with SVM ensemble models is an efficient and reliable method for the simultaneous qualification of sulfur content, TAN, and API gravity in crude oils. This is because SVM ensembles tend to perform better, reducing overfitting. Moreover, they create more robust models, reduce variance, and increase model stability.Este estudo tem como objetivo apresentar uma nova abordagem de aprendizado de máquina para classificar amostras de petróleo bruto com base em suas propriedades físico-químicas, como concentração de enxofre (S), número de acidez total (NAT) e densidade API (Americam Petroleum Institute). O petróleo bruto é uma mistura complexa, composta predominantemente por substâncias de carbono e hidrogênio, além de elementos heteroatômicos, como nitrogênio, oxigênio e enxofre. Essa complexidade torna essencial uma análise precisa, especialmente para evitar problemas ao longo da cadeia de produção. O método proposto busca superar as limitações das técnicas tradicionais, que frequentemente são demoradas, consomem grandes volumes de amostras e utilizam solventes em excesso. Como alternativa promissora, técnicas espectroscópicas têm sido utilizadas para a caracterização de petróleo, e métodos de aprendizado de máquina têm demonstrado alta eficiência na análise de misturas complexas. Esses métodos oferecem uma exploração mais rápida e precisa da variabilidade química em comparação com abordagens convencionais. Neste estudo, 196 amostras de petróleo bruto, variando em teor de enxofre, NAT e densidade API, foram analisadas. O uso de SVM ensemble (Support Vector Machines) foi explorado como uma abordagem poderosa para melhorar o desempenho da classificação, reduzindo a variabilidade dos modelos individuais, aumentando a robustez contra o overfitting e permitindo um desempenho preditivo mais confiável do que o de um modelo único. Para avaliar o desempenho, foram utilizados critérios como sensibilidade, especificidade, taxa de erro, coeficiente de correlação de Matthews e precisão, comparando os modelos SVM ensemble com PLS-DA e SVM. Os resultados demonstraram que a combinação de espectroscopia NIR (Espectroscopia do Infravermelho Próximo) com modelos de SVM ensemble é um método eficiente e confiável para a classificação simultânea de teor de enxofre, NAT e densidade API em petróleos brutos. Isso ocorre porque o SVM ensemble tende a apresentar melhor desempenho preditivo, reduzindo o overfitting. Além disso, ele cria modelos mais robustos, reduz a variância e aumenta a estabilidade do modelo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Texthttp://repositorio.ufes.br/handle/10/20655porUniversidade Federal do Espírito SantoMestrado em QuímicaPrograma de Pós-Graduação em QuímicaUFESBRCentro de Ciências ExatasQuímicaSVM ensemblePetróleoNIRMétodos de aprendizagem de máquina aplicados à ciência do petróleoMachine learning methods applied to petroleum science and biofuelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/474f5b06-b9ff-4d91-a5e5-90f29ff6d229/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALMariaCarolinadaVitóriaAlvarengaBarboza-2025-Dissertacao.pdfapplication/pdf7024292http://repositorio.ufes.br/bitstreams/02fe587b-b928-44fb-91f9-88398274ee8d/download3068104f48cc64f8ba930a3f70195da2MD54THUMBNAILMockup acadêmico minimalista.pngimage/png3220636http://repositorio.ufes.br/bitstreams/0957a0d3-feff-425b-b150-6150b8d90f29/downloadadd992fac48e869c446a2867e200ed78MD5310/206552025-12-01 15:56:48.646oai:repositorio.ufes.br:10/20655http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082025-12-01T15:56:48Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Métodos de aprendizagem de máquina aplicados à ciência do petróleo
dc.title.alternative.none.fl_str_mv Machine learning methods applied to petroleum science and biofuels
title Métodos de aprendizagem de máquina aplicados à ciência do petróleo
spellingShingle Métodos de aprendizagem de máquina aplicados à ciência do petróleo
Barboza, Maria Carolina da Vitória Alvarenga
Química
SVM ensemble
Petróleo
NIR
title_short Métodos de aprendizagem de máquina aplicados à ciência do petróleo
title_full Métodos de aprendizagem de máquina aplicados à ciência do petróleo
title_fullStr Métodos de aprendizagem de máquina aplicados à ciência do petróleo
title_full_unstemmed Métodos de aprendizagem de máquina aplicados à ciência do petróleo
title_sort Métodos de aprendizagem de máquina aplicados à ciência do petróleo
author Barboza, Maria Carolina da Vitória Alvarenga
author_facet Barboza, Maria Carolina da Vitória Alvarenga
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0009-0007-7744-4434
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/6535362149640541
dc.contributor.advisor-co1.fl_str_mv Ferreira, Rafael de Queiroz
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0002-5190-8508
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5053247764430323
dc.contributor.advisor1.fl_str_mv Filgueiras, Paulo Roberto
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0003-2617-1601
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1907915547207861
dc.contributor.author.fl_str_mv Barboza, Maria Carolina da Vitória Alvarenga
dc.contributor.referee1.fl_str_mv Oliveira, Emanuele Catarina da Silva
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0003-0699-6104
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1715851915787164
dc.contributor.referee2.fl_str_mv Souza, Murilo de Oliveira
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-5299-564X
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1832643912229312
contributor_str_mv Ferreira, Rafael de Queiroz
Filgueiras, Paulo Roberto
Oliveira, Emanuele Catarina da Silva
Souza, Murilo de Oliveira
dc.subject.cnpq.fl_str_mv Química
topic Química
SVM ensemble
Petróleo
NIR
dc.subject.por.fl_str_mv SVM ensemble
Petróleo
NIR
description This study aims to present a new machine learning approach to classify crude oil samples based on their physicochemical properties, such as sulfur (S) concentration, total acid number (TAN), and API gravity (American Petroleum Institute). Crude oil is a complex mixture predominantly composed of carbon and hydrogen substances, along with heteroatomic elements such as nitrogen, oxygen, and sulfur. This complexity makes precise analysis essential, especially to avoid problems throughout the production chain. Proposed method seeks to overcome the limitations of traditional techniques, which are often time-consuming, require large sample volumes, and use excessive solvents. As a promising alternative, spectroscopic techniques have been employed for crude oil characterization, and machine learning methods have demonstrated high efficiency in analyzing complex mixtures. These methods offer faster and more accurate exploration of chemical variability compared to conventional approaches. This study, 196 crude oil samples, varying in sulfur content, TAN, and API gravity, were analyzed. The use of SVM (Support Vector Machine) ensembles was explored as a powerful approach to improve classification performance by reducing the variability of individual models, increasing robustness against overfitting, and enabling better generalization than a single model. To evaluate performance, criteria such as sensitivity, specificity, error rate, Matthews correlation coefficient, and accuracy were used, comparing SVM ensemble models with PLS-DA and standard SVM. The results demonstrated that the combination of NIR spectroscopy (Near Infrared Spectroscopy) with SVM ensemble models is an efficient and reliable method for the simultaneous qualification of sulfur content, TAN, and API gravity in crude oils. This is because SVM ensembles tend to perform better, reducing overfitting. Moreover, they create more robust models, reduce variance, and increase model stability.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-11-28T20:45:42Z
dc.date.available.fl_str_mv 2025-11-28T20:45:42Z
dc.date.issued.fl_str_mv 2025-03-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/20655
url http://repositorio.ufes.br/handle/10/20655
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Química
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/474f5b06-b9ff-4d91-a5e5-90f29ff6d229/download
http://repositorio.ufes.br/bitstreams/02fe587b-b928-44fb-91f9-88398274ee8d/download
http://repositorio.ufes.br/bitstreams/0957a0d3-feff-425b-b150-6150b8d90f29/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
3068104f48cc64f8ba930a3f70195da2
add992fac48e869c446a2867e200ed78
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1856037476479533056